首页> 外文学位 >The abiotic transformation of nitroaromatic pesticides by iron(II) and dissolved organic matter.
【24h】

The abiotic transformation of nitroaromatic pesticides by iron(II) and dissolved organic matter.

机译:铁(II)和溶解性有机物对硝基芳族农药的非生物转化。

获取原文
获取原文并翻译 | 示例

摘要

Nitroaromatic pesticides are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform nitroaromatic pesticides in natural systems. In this study, the abiotic chemical transformation of pentachloronitrobenzene, trifluralin and pendimethalin was studied in controlled laboratory systems containing Fe(II) and fulvic acid DOM isolates, and in natural pore waters collected from a freshwater wetland. Geochemical parameters affecting reactivity in the natural wetland were also monitored.; Rapid reduction of pentachloronitrobenzene to pentachloroaniline was observed in controlled systems in the presence of Fe(II) and DOM fulvic acid isolates from surface waters (pseudo-first-order half-life, t1/2 ≈ 30 min to 4 h). DOM in unfiltered systems inhibited iron colloid formation and possibly limited the formation of reactive Fe(II)-iron colloid surface complexes, causing reductive transformation in Fe(II)-DOM media to be slower in some cases relative to Fe(II)-only controls. Conversely, in 0.45-microm-filtered solutions pentachloronitrobenzene reduction in Fe(II)-DOM media was faster than the Fe(II)-only controls, suggesting that DOM enhances the reductive capacity of Fe(II) in the absence of iron colloids.; Differential pulse polarography (DPP) scans of natural wetland pore waters collected from Old Woman Creek (OWC; located in northern Ohio) revealed that a variety of redox-active metals exist naturally in OWC pore waters. Fe(III)-organic and Fe(II) species increased to a depth of ∼30 cm from the sediment-water interface, and a maximum for dissolved Mn(II) was observed at ∼6 cm depth. Dissolved Fe(II) was necessary for rapid pentachloronitrobenzene reduction in natural pore water ( 24 hr), and faster reduction was observed with increased pore water pH. Pentachloronitrobenzene reduction in "pH-adjusted" pore waters (acidified to pH 2.5 after pore water extraction and raised to the native pH (between 6.7 to 7.6) prior to reaction) was similar to that observed in a model system containing Fe(II) and an aquatic fulvic acid isolate. Conversely, pentachloronitrobenzene reduction in fresh, unaltered pore water was slower than that observed in "pH-adjusted" pore water. This indicated that the Fe(II) speciation and reductive capacity differs between unaltered and "pH-adjusted" samples due to a rearrangement of the naturally-occurring Fe complexes with pH-adjustment.; Trifluralin and pendimethalin reduction occurred in controlled systems containing Fe(II) and DOM surface water isolates, and in natural pore waters collected from OWC. Dissolved Fe(II) was necessary for trifluralin and pendimethalin reduction to occur, and pendimethalin reduction was faster in solutions containing Fe(II) and Suwannee River, Georgia, fulvic acid isolate relative to reactions containing Fe(II) and Pony Lake, Antarctica, fulvic acid isolate. DOM source material did not affect reactivity for trifluralin in similar systems. The reduction rate increased with increased pH for both compounds. Natural pore waters reduced both trifluralin and pendimethalin, and trifluralin degraded to multiple byproducts while pendimethalin only degraded to one major byproduct. Comparison of pseudo-first-order rate constants between controlled systems containing Fe(II) and OWC fulvic acid isolate, and natural sediment pore waters collected from OWC, showed that trifluralin and pendimethalin reduction in controlled systems was an order of magnitude faster relative to natural pore waters.; This study is the first to investigate nitroaromatic pesticide reduction in the presence of Fe(II) and DOM surface water isolates, and in natural benthic pore waters that contain high concentrations of dissolved Fe(II) and DOM. Although pentachloronitrobenzene, trifluralin and pendimethalin were reduced both in controlled s
机译:硝基芳香族农药是疏水性污染物,可通过沉积来自地表水中的悬浮固体而积聚在沉积物中。存在于淡水沉积物的低氧和缺氧区域的Fe(II)和溶解性有机物(DOM)可以在自然系统中转化硝基芳香农药。在这项研究中,在含有Fe(II)和黄腐酸DOM分离物的受控实验室系统以及从淡水湿地收集的天然孔隙水中,研究了五氯硝基苯,三氟拉林和二甲戊乐灵的非生物化学转化。还监测了影响天然湿地反应性的地球化学参数。在有Fe(II)和DOM黄腐酸从地表水中分离出来的情况下,在受控系统中观察到五氯硝基苯迅速还原为五氯苯胺(伪一阶半衰期,t1 / 2&ap; 30 min至4 h)。未过滤系统中的DOM抑制了铁胶体的形成,并可能限制了反应性Fe(II)-铁胶体表面复合物的形成,导致Fe(II)-DOM介质中的还原转化在某些情况下相对于仅Fe(II)控件。相反,在0.45微米过滤的溶液中,Fe(II)-DOM介质中五氯硝基苯的还原速度比仅Fe(II)的对照要快,这表明DOM在不存在铁胶体的情况下提高了Fe(II)的还原能力。 ;从老妇溪(OWC;位于俄亥俄州北部)收集的天然湿地孔隙水的差分脉冲极谱法(DPP)扫描显示,OWC孔隙水中自然存在多种氧化还原活性金属。 Fe(III)-有机物和Fe(II)种类从沉积物-水界面增加到〜30 cm的深度,并且在〜6 cm的深度观察到最大溶解的Mn(II)。溶解的Fe(II)是快速还原天然孔隙水中五氯硝基苯所必需的(<24小时),并且随着孔隙水pH值的增加,还原速度更快。 “调节pH”的孔隙水中五氯硝基苯的减少(提取孔隙水后酸化至pH 2.5,并在反应前升高至天然pH(6.7至7.6之间))与在含Fe(II)和Fe(II)的模型系统中观察到的相似。一种水生黄腐酸分离物。相反,新鲜的,未改变的孔隙水中五氯硝基苯的还原速度要比“ pH调节”的孔隙水中的还原速度慢。这表明未改变的样品和经“ pH调节”的样品之间的Fe(II)形态和还原能力不同,这是由于天然存在的Fe配合物通过pH调节而重新排列的结果。在含有Fe(II)和DOM地表水分离物的受控系统中以及从OWC收集的天然孔隙水中,三氟拉林和二甲戊乐灵的还原发生。溶解的Fe(II)对于三氟拉林和二甲戊乐灵的还原是必需的,相对于含有Fe(II)和南极州Pony Lake的反应,在含有Fe(II)和佐治亚州Suwannee River的富叶酸分离液中,二甲戊灵的还原速度更快。黄腐酸分离物。 DOM原料在类似系统中不影响三氟拉林的反应性。两种化合物的还原速率均随pH值的增加而增加。天然孔隙水会同时降低三氟拉林和二甲戊乐灵,三氟拉林降解为多种副产物,而二甲戊乐灵仅降解为一种主要副产物。含Fe(II)和OWC黄腐酸分离物的受控系统与从OWC收集的天然沉积物孔隙水之间的伪一级速率常数的比较表明,受控系统中的氟乐灵和二甲戊乐灵还原速度比天然系统快一个数量级。毛孔水。这项研究是第一个研究在Fe(II)和DOM地表水分离物存在下以及在含有高浓度Fe(II)和DOM的天然底栖孔水中还原硝基芳香农药的方法。尽管五氯硝基苯,氟乐灵和二甲戊乐灵均在对照条件下均降低

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号