首页> 外文学位 >Engineering Novel 3D Tumor-Stroma Models to Bridge the Gap Between Preclinical Drug Development Aand Human Clinical Outcomes
【24h】

Engineering Novel 3D Tumor-Stroma Models to Bridge the Gap Between Preclinical Drug Development Aand Human Clinical Outcomes

机译:工程新颖的3D肿瘤间质模型可缩小临床前药物开发与人类临床结果之间的差距

获取原文
获取原文并翻译 | 示例

摘要

While much progress has been made in the war on cancer, shortcomings in the drug development process have kept anti-cancer clinical trial success rates low. One of the many factors implicated in this is the lack of pathophysiologically relevant and predictive preclinical models. Specifically, traditional preclinical tumor models do not capture tumor microenvironment complexity and heterogeneity, while advanced three-dimensional (3D) models suffer from poor reproducibility, lack of relevant and standardized extracellular matrix (ECM), and inability to interface with automated, high-throughput systems. Because of this, it has been suggested that developing novel phenotypic tumor models which balance the need for complexity and relevance with the ability to scale-up and translate, may help reduce the high attrition rates of clinical trials. Toward this end, this work describes the development and validation of a novel preclinical tumor model striving to achieve this balance. Model development was specifically focused on metastasis, as it remains the main cause of cancer deaths and has few good preclinical models. Since one major shortcoming of 3D in-vitro models is a lack of standardized, relevant ECM, initial work focused on defining the role of ECM composition and biophysical properties in guiding invasive phenotypes. Using a customizable and standardized oligomeric type I collagen, we demonstrated that 3D collagen fibril architecture and model geometry were key determinants of phenotypic trends and important design considerations for future model development. This work was followed by the design and validation of a custom fabrication platform to enable the rapid, reproducible embedment of tunable tumor-tissue spheres within a customizable 3D ECM. It was validated that this model can distinguish various metastatic phenotypes, is compatible with low-passage, patient-derived cells, and is able to interface with automated imaging systems. Overall, this work represents the first steps of design, verification, and validation of a novel 3D metastasis model which can serve as a relevant and predictive tool for high-throughput, high-content preclinical drug development.
机译:尽管在抗癌战争中已取得很大进展,但药物开发过程中的缺陷使抗癌临床试验的成功率保持较低水平。牵涉其中的许多因素之一是缺乏病理生理相关和可预测的临床前模型。具体而言,传统的临床前肿瘤模型无法捕获肿瘤微环境的复杂性和异质性,而高级三维(3D)模型则具有可再现性差,缺乏相关和标准化的细胞外基质(ECM)以及无法与自动化,高通量接口的缺点系统。因此,已建议开发出平衡复杂性和相关性与扩大和翻译能力之间平衡的新型表型肿瘤模型,可能有助于降低临床试验的高消耗率。为此,这项工作描述了努力实现这种平衡的新型临床前肿瘤模型的开发和验证。模型开发专门针对转移,因为它仍然是癌症死亡的主要原因,并且缺乏良好的临床前模型。由于3D体外模型的主要缺点是缺乏标准化的相关ECM,因此最初的工作侧重于定义ECM成分和生物物理特性在指导侵入表型中的作用。使用可定制的标准化I型低聚胶原蛋白,我们证明了3D胶原蛋白原纤维的结构和模型的几何形状是表型趋势的关键决定因素,也是未来模型开发的重要设计考虑因素。这项工作之后是定制制造平台的设计和验证,以使可调谐肿瘤组织球体快速,可再现地嵌入可定制3D ECM中。验证了该模型可以区分各种转移表型,与低通道,患者来源的细胞兼容,并且能够与自动成像系统对接。总的来说,这项工作代表了设计,验证和验证新型3D转移模型的第一步,该模型可作为高通量,高含量临床前药物开发的相关和预测工具。

著录项

  • 作者

    Puls, Theodore J.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biomedical engineering.;Oncology.;Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号