首页> 外文学位 >System Identification, Diagnosis, and Built-In Self-Test of High Switching Frequency DC-DC Converters
【24h】

System Identification, Diagnosis, and Built-In Self-Test of High Switching Frequency DC-DC Converters

机译:高开关频率DC-DC转换器的系统识别,诊断和内置自检

获取原文
获取原文并翻译 | 示例

摘要

Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to smaller solution size (higher power density) and higher efficiency. As the filter components become smaller in value and size, they are unfortunately also subject to higher process variations and worse degradation profiles jeopardizing stable operation of the power supply.;This dissertation presents techniques to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of operation. A digital pseudo-noise (PN) based stimulus is used to excite the DC-DC system at various circuit nodes to calculate the corresponding closed-loop impulse response. The test signal energy is spread over a wide bandwidth and the signal analysis is achieved by correlating the PN input sequence with the disturbed output generated, thereby accumulating the desired behavior over time. A mixed-signal cross-correlation circuit is used to derive on-chip impulse responses, with smaller memory and lower computational requirement in comparison to a digital correlator approach. Model reference based parametric and non-parametric techniques are discussed to analyze the impulse response results in both time and frequency domain.;The proposed techniques can extract open-loop phase margin and closed-loop unity-gain frequency within 5.2% and 4.1% error, respectively, for the load current range of 30--200mA. Converter parameters such as natural frequency (on ), quality factor (Q), and center frequency (oc ) can be estimated within 3.6%, 4.7%, and 3.8% error respectively, over load inductance of 4.7--10.3microH, and filter capacitance of 200--400nF.;A 5-MHz switching frequency, 5--8.125V input voltage range, voltage-mode controlled DC-DC buck converter is designed for the proposed built-in self-test (BIST) analysis. The converter output voltage range is 3.3--5V and the supported maximum load current is 450mA. The peak efficiency of the converter is 87.93%. The proposed converter is fabricated on a 0.6microm 6-layer-metal Silicon-On-Insulator (SOI) technology with a die area of 9mm2 . The area impact due to the system identification blocks including related I/O structures is 3.8% and they consume 530microA quiescent current during operation.
机译:复杂的电子系统包括多个电源域和动态变化的动态功耗模式,需要使用多个电源转换和调节单元。高频开关转换器由于较小的解决方案尺寸(较高的功率密度)和较高的效率而在DC-DC转换器市场中日益受到关注。不幸的是,随着滤波器组件的尺寸和尺寸变小,它们还会经受更高的工艺变化和更坏的退化曲线,从而危及电源的稳定运行。本论文提出了跟踪DC-DC动态环路特性变化的技术。转换器而不会干扰正常的操作模式。使用基于数字伪噪声(PN)的激励来激励各个电路节点处的DC-DC系统,以计算相应的闭环脉冲响应。测试信号能量分布在较宽的带宽上,并且通过将PN输入序列与所产生的受干扰输出相关联来实现信号分析,从而随时间累积所需的行为。与数字相关器方法相比,混合信号互相关电路用于导出片上脉冲响应,具有较小的存储器和较低的计算要求。讨论了基于模型参考的参数和非参数技术,以分析时域和频域的脉冲响应结果。所提出的技术可以在5.2%和4.1%的误差范围内提取开环相位裕度和闭环单位增益频率分别针对30--200mA的负载电流范围。在4.7--10.3microH的负载电感和滤波器的情况下,诸如固有频率(on),品质因数(Q)和中心频率(oc)之类的转换器参数误差估计分别在3.6%,4.7%和3.8%之内。电容为200--400nF .;开关频率为5MHz,输入电压范围为5--8.125V,电压模式控制的DC-DC降压转换器专为所建议的内置自测(BIST)分析而设计。转换器的输出电压范围为3.3--5V,支持的最大负载电流为450mA。转换器的峰值效率为87.93%。拟议的转换器采用0.6微米6层金属绝缘体上硅(SOI)技术制造,芯片面积为9mm2。由于系统标识块(包括相关的I / O结构)而导致的面积影响为3.8%,并且它们在工作期间消耗530microA的静态电流。

著录项

  • 作者

    Beohar, Navankur.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Electrical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号