首页> 外文学位 >Self-assembly and interactions of biomimetic thin films.
【24h】

Self-assembly and interactions of biomimetic thin films.

机译:仿生薄膜的自组装和相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Bilayer lipid membranes create the natural environment for the immobilization of functional proteins and have been used as a model for understanding structure and properties of cell membranes. The development of biomimetic surfaces requires in depth knowledge of surface science, self-assembly, immobilization techniques, nanofabrication, biomolecular interactions and analytical techniques.;This research is focused on synthesizing and characterizing biomimetic artificial surfaces for fundamental studies in membrane structure and better understanding of specific and non-specific interactions. The other main focus is on surface engineering of self-assembled, nanostructured interfaces that mimic cell membranes. These structures provide a powerful bottom-up approach to the studies of the structure and functionality of cell membranes and their interactions with other molecules. One of the advantages of this approach is that the complexity of the system can be controlled and gradually increased to add functionalities. This dissertation provides a first single molecule force measurement of the specific interactions between Salmonella typhimurium and P22 bacteriophage. This dissertation also provides a novel model system for the confined crystallization of drug molecules such as aspirin using the concept of phospholipid bilayer assembly at surfaces. The results will impact the development of biosensors and drug delivery.;The defense will focus on the preparation and bio-recognition interactions between a monolayer of bacteriophage P22, covalently bound to glass substrates through a bifunctional cross linker 3-aminopropyltrimethoxysilane, and the outer membrane of Salmonella, lipopolysaccharides (LPS). The LPS bilayer was deposited on poly (ethylenimine)-modified mica from their sonicated unilamellar vesicle solution. The specific binding of Salmonella typhimurium to the phage monolayer was studied by enzyme-linked immunosorbent assay (ELISA) and atomic force microscopy (AFM). Using AFM force measurements discrete unbinding forces between surface attached P22 and LPS were obtained. Both whole P22 and tailspike proteins separated from the P22 capsid were used. The unbinding force histograms point to discrete forces between substrate-supported P22 and LPS. The unit unbinding force was found to decrease with decreasing force loading rate and increasing temperature. By fitting the force data with the Bell model, an energy barrier of approximately 55 KJ/mol was obtained. The resilience of phage binding to pH variation and hydration/dehydration cycles argues for the robustness of potential phage-based devices.
机译:双层脂质膜为固定功能蛋白创造了自然环境,并已被用作了解细胞膜结构和特性的模型。仿生表面的发展需要对表面科学,自组装,固定化技术,纳米加工,生物分子相互作用和分析技术有深入的了解;该研究的重点是合成和表征仿生人工表面,以进行膜结构的基础研究并更好地理解特定和非特定的互动。另一个主要重点是模仿细胞膜的自组装纳米结构界面的表面工程。这些结构为研究细胞膜的结构和功能及其与其他分子的相互作用提供了强有力的自下而上的方法。这种方法的优点之一是可以控制系统的复杂性并逐渐增加其功能性。本文为鼠伤寒沙门氏菌与P22噬菌体之间的特异性相互作用提供了第一个单分子力测量方法。本论文还利用磷脂双层在表面组装的概念,为药物分子如阿司匹林的有限结晶提供了一种新型的模型系统。该结果将影响生物传感器的开发和药物传递。防御将侧重于通过双功能交联剂3-氨丙基三甲氧基硅烷与玻璃基板共价结合的单层噬菌体P22的制备和生物识别相互作用。沙门氏菌,脂多糖(LPS)。将LPS双层从其超声处理的单层囊泡溶液中沉积到聚(乙烯亚胺)改性的云母上。通过酶联免疫吸附试验(ELISA)和原子力显微镜(AFM)研究了鼠伤寒沙门氏菌与噬菌体单层的特异性结合。使用AFM力测量获得了附着在表面的P22和LPS之间的离散解粘力。从P22衣壳分离的整个P22蛋白和尾钉蛋白都被使用。松开力直方图指向衬底支撑的P22和LPS之间的离散力。发现单位解束力随着力加载速率的降低和温度的升高而降低。通过将力数据与Bell模型拟合,可以获得约55 KJ / mol的能垒。噬菌体结合pH值变化和水合/脱水循环的弹性证明了潜在的基于噬菌体的装置的坚固性。

著录项

  • 作者

    Handa, Hitesh.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Chemistry Biochemistry.;Engineering Materials Science.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号