首页> 外文学位 >Structural control architecture optimization for three-dimensional systems using advanced multi-objective genetic algorithms.
【24h】

Structural control architecture optimization for three-dimensional systems using advanced multi-objective genetic algorithms.

机译:使用先进的多目标遗传算法对三维系统进行结构控制体系结构优化。

获取原文
获取原文并翻译 | 示例

摘要

The architectures of the control devices in active control algorithm are an important fact in civil structural buildings. Traditional research has limitations in finding the optimal architecture of control devices such as using predefined numbers or locations of sensors and dampers within the 2-and 3-dimensional (3-D) model of the structure. Previous research using single-objective optimization only provides limited data for defining the architecture of sensors and control devices. The Linear Quadratic Gaussian (LQG) control algorithm is used as the active control strategy. The American Society of Civil Engineers (ASCE) control benchmark building definition is used to develop the building system model. The proposed gene manipulation genetic algorithm (GMGA) determines the near-optimal Pareto fronts which consist of varying numbers and locations of sensors and control devices for controlling the ASCE benchmark building by considering multi-objectives such as interstory drift and minimizing the number of the control devices.;The proposed GMGA reduced the central processing unit (CPU) run time and produced more optimal Pareto fronts for the 2-D and 3-D 20-story building models. Using the GMGA provided several benefits: (1) the possibility to apply any presuggested multi-objective optimization mechanism; (2) the availability to perform a objective optimization problem; (3) the adoptability of the diverse encoding provided by the GA; (4) the possibility of including the engineering judgment in generating the next generation population by using a gene creation mechanisms; and (5) the flexibility of the gene creation mechanism in applying and changing the mechanism dependent on optimization problem.;The near-optimal Pareto fronts obtained offer the structural engineer a diverse choice in designing control system and installing the control devices. The locations and numbers of the dampers and sensors in each story are highly dependent on the sensor locations. By providing near-Pareto fronts of possible solutions to the engineer that also consider diverse earthquakes, the engineer can get normalized patterns of architectures of control devices and sensors about random earthquakes.
机译:主动控制算法中控制设备的体系结构是民用建筑中的重要事实。传统研究在寻找控制设备的最佳架构方面存在局限性,例如在结构的二维和3-维(3-D)模型中使用预定义数量或位置的传感器和阻尼器。先前使用单目标优化的研究仅提供了有限的数据来定义传感器和控制设备的体系结构。线性二次高斯(LQG)控制算法用作主动控制策略。美国土木工程师学会(ASCE)控制基准建筑物定义用于开发建筑物系统模型。拟议的基因操纵遗传算法(GMGA)通过考虑诸如层间漂移之类的多目标并最大程度地减少控制数量来确定接近最佳的Pareto前沿,该前沿由变化数量和位置的传感器和控制设备组成,用于控制ASCE基准建筑拟议的GMGA减少了中央处理器(CPU)的运行时间,并为2-D和3-D 20层建筑模型提供了更理想的Pareto前沿。使用GMGA有以下几个好处:(1)应用任何建议的多目标优化机制的可能性; (2)执行目标优化问题的可用性; (3)GA提供的多种编码的可采用性; (4)在利用基因产生机制产生下一代种群的过程中包括工程判断的可能性; (5)基因创建机制在应用和改变机制时的灵活性取决于优化问题。所获得的近乎最优的帕累托前沿为结构工程师在设计控制系统和安装控制装置方面提供了多种选择。每个楼层中的阻尼器和传感器的位置和数量在很大程度上取决于传感器的位置。通过为可能考虑多种地震的工程师提供近乎帕累托的可行解决方案,工程师可以获取有关随机地震的控制设备和传感器架构的标准化模式。

著录项

  • 作者

    Cha, Young Jin.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Civil.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 241 p.
  • 总页数 241
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号