首页> 外文学位 >Simulation numerique et experimentale de l'ecoulement d'air de l'accretion de glace autour d'une pale d'eolienne.
【24h】

Simulation numerique et experimentale de l'ecoulement d'air de l'accretion de glace autour d'une pale d'eolienne.

机译:风力涡轮机叶片周围积冰的气流的数值和实验模拟。

获取原文
获取原文并翻译 | 示例

摘要

The wind-energy market is in full growth in Quebec, but technical difficulties due to cold climate conditions have occurred for most of the existing projects. One of the main issues associated with wind energy in cold climates is the icing of the wind-turbine blades. Because meteorological conditions and wind turbines characteristics are different from a place to another, experimental measures in specific places will never be enough and analytical studies using numerical simulations have become essential.; Thus, a numerical model of the air flow around a rotor blade has been developed. This numerical model constitutes the first one of the four modules (Flow, Trajectories, Thermodynamic and Geometry) of the LIMAIcing2D software, developed by Anti-Icing Materials International Laboratory (AMIL) and specifically adapted to simulate the icing of wind turbines. The air flow numerical model runs with a 2D clean or iced blade profile and is made up with 2 different parts: potential flow calculation with the Hess and Smith panel method and viscous boundary layer calculation with Thwaites and Head integral methods.; Experimental measures using an aerodynamic balance have then been carried out in the AMIL wind tunnel on a NACA 63415 wind turbine blade profile in order to build lift and drag coefficients vs attack angle curves. Velocity field has also been measured all around the rotor blade profile with hot wire probes anemometers. Tangential speeds and boundary layer thicknesses have been evaluated by analysing speed measures very close to the blade surface.; Numerical model results, experimental results and literature data have then been confronted in order to validate the air flow numerical model. For clean blade profiles and when Reynolds number is high enough (Re > 4.0*10 6), the results of the numerical model are validated for positions before the stall region and for attack angles between 0° and 15°. For iced blade profiles, results concerning tangential speeds and boundary layer parameters are not so good but, results concerning velocity fields and stream lines, which are not parameters directly linked to the blade profile surface, look to be coherent for positions in front of big ice deposits.; Icing simulation was finally carried out on the NACA 63415 blade profile in the AMIL refrigerated wind tunnel. The shapes and masses of the ice deposits were measured as well as the aerodynamic lift and drag of the iced blade profiles. The conditions for simulation in the wind tunnel were based on meteorological data measured at the Murdochville wind farm in the Gaspe Peninsula during in-fog icing. Two different in-fog icing conditions were considered, characterized by wind speed of 8.8 and 4.4 m/s, respectively, generating wet and dry ice accretions. Scaling was carried out based on the 1.8 MW - Vestas V80 wind turbine technical data, for three different radial positions and two in-fog icing conditions. In wet regime testing, glaze formed mostly near the leading edge and on the lower surface. It accumulated by runoff on the trailing edge for blade profiles located at the centre and tip blade. In dry-regime testing, rime accreted on the leading edge and partially on the lower surface of the blade profiles located between the middle and the tip blade. In both dry and wet regimes; because of a greater ice amount for high radial positions, lift decreased with an increase in radial position, while drag increased following a power law. Between the centre and the tip, drag increased considerably compared to lift, which seriously decreased rotor blade aerodynamic performances. An ideal horizontal-axis wind-turbine model was finally used to evaluate the impact of the lift reduction and drag increase on the wind turbine blade. For both icing events, the model shows that drag force becomes too great compared to lift, resulting in negative torque and the wind turbine stoppage. Torque reduction is more significant on the last half of the bla
机译:魁北克的风能市场已经全面增长,但是大多数现有项目都因寒冷的气候而出现技术难题。在寒冷气候中与风能相关的主要问题之一是风力涡轮机叶片的结冰。由于一个地方的气象条件和风力涡轮机的特性各不相同,因此在特定地方进行实验测量永远是不够的,使用数值模拟进行分析研究已变得至关重要。因此,已经开发了绕转子叶片的空气流动的数值模型。该数值模型构成了LIMAIcing2D软件的四个模块(流量,轨迹,热力学和几何形状)中的第一个模块,该模块由国际防冰材料实验室(AMIL)开发,专门用于模拟风力涡轮机的结冰。空气流动数值模型以2D清洁或结冰的叶片轮廓运行,并由2个不同部分组成:使用Hess和Smith面板方法进行势流计算,以及使用Thwaites和Head积分方法进行粘性边界层计算。然后在AMIL风洞中的NACA 63415风力涡轮机叶片轮廓上进行了使用空气动力学平衡的实验措施,以建立升力和阻力系数与迎角的关系曲线。还使用热线探针风速计测量了转子叶片轮廓周围的速度场。切向速度和边界层厚度已通过分析非常接近叶片表面的速度测量值进行了评估。然后面对数值模型结果,实验结果和文献数据,以验证气流数值模型。对于清洁的叶片轮廓和雷诺数足够高(Re> 4.0 * 10 6),数值模型的结果将针对失速区域之前的位置以及0°至15°之间的迎角进行验证。对于冰刀片轮廓,与切线速度和边界层参数有关的结果不是很好,但是与速度场和流线有关的结果(不是直接与刀片轮廓表面相关的参数)对于大冰块前面的位置看起来是连贯的存款。最后,在AMIL冷藏风洞中的NACA 63415叶片轮廓上进行了结冰模拟。测量了冰沉积物的形状和质量,以及冰刀片轮廓的气动升力和阻力。风洞中的模拟条件基于雾化期间加斯佩半岛默多克维尔风电场的气象数据。考虑了两种不同的雾化条件,其风速分别为8.8 m / s和4.4 m / s,产生了湿冰和干冰积聚。缩放是基于1.8 MW-Vestas V80风力涡轮机的技术数据,针对三个不同的径向位置和两个雾化条件进行的。在湿态试验中,釉料主要形成在前缘附近和下表面。它通过后缘的径流累积到位于中部和顶部叶片的叶片轮廓。在干式测试中,轮辋在前缘和中锋刀片之间的叶片轮廓的下表面上增生。在干燥和潮湿的情况下;由于高径向位置的冰量更大,升力随着径向位置的增加而降低,而阻力则根据幂定律而增加。与升力相比,在中心和叶尖之间的阻力大大增加,这严重降低了转子叶片的空气动力性能。最后,使用理想的水平轴风力涡轮机模型来评估升力减小和阻力增加对风力涡轮机叶片的影响。对于这两次结冰事件,该模型均显示,与升力相比,拖曳力变得太大,从而导致负转矩和风力涡轮机停止运转。 bla的后半部分扭矩降低更为显着

著录项

  • 作者

    Hochart, Clement.;

  • 作者单位

    Universite du Quebec a Rimouski (Canada).;

  • 授予单位 Universite du Quebec a Rimouski (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.Sc.
  • 年度 2007
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号