首页> 中文学位 >光学活性螺旋聚炔纳米粒子的制备与诱导对映体选择性结晶应用研究
【6h】

光学活性螺旋聚炔纳米粒子的制备与诱导对映体选择性结晶应用研究

代理获取

目录

文摘

英文文摘

符号说明

第一章 绪论

1.1 螺旋聚合物研究进展

1.1.1 前言

1.1.2 螺旋聚合物发展历程

1.1.3 螺旋聚合物种类

1.1.4 螺旋聚合物合成方法

1.1.5 螺旋聚合物研究方法

1.1.6 螺旋聚合物研究现状及应用发展展望

1.2 取代聚乙炔螺旋聚合物研究进展

1.2.1 前言

1.2.2 聚炔丙磺酰胺合成

1.2.3 聚炔丙磺酰酰胺螺旋结构影响因素

1.3 乳液与微乳液

1.3.1 乳液聚合

1.3.2 微乳液聚合

1.3.3 微乳液性能及用途

1.4 核壳聚合物乳液

1.4.1 核壳乳胶粒生成机理

1.4.2 核壳结构复合乳胶粒子制备方法

1.4.3 核壳结构乳胶粒子形态及影响因素

1.4.4 聚合物核壳粒子结构表征

1.4.5 核壳结构聚合物粒子的应用

1.5 手性氨基酸对映体拆分

1.5.1 酶拆分法

1.5.2 膜分离法拆分

1.5.3 化学拆分法

1.5.4 结晶拆分法

1.5.5 色谱拆分法

1.6 本课题的提出及意义

参考文献

第二章 催化乳液聚合法制备光学活性螺旋取代聚乙炔纳米粒子

2.1 引言

2.2 实验部分

2.2.1 仪器及试剂

2.2.2 单体及聚合物NPs乳液的合成

2.2.3 聚合物的提取

2.2.4 铑金属催化剂的合成

2.2.5 产物表征方法

2.3 结果与讨论

2.3.1 螺旋取代乙炔催化微乳液聚合

2.3.2 螺旋取代聚乙炔乳液NPs状态

2.3.3 聚合物NPs乳液光学活性

2.3.4 聚合物的二级结构

2.3.5 催化微乳液聚合法制备螺旋取代聚炔微乳反应影响因素

2.3.6 催化微乳液聚合法制备螺旋取代聚乙炔NPs微乳导电能力

2.3.7 催化微乳液聚合机理

2.4 本章小结

参考文献

第三章 制备光学活性螺旋取代聚乙炔/烯类聚合物核壳纳米粒子

3.1 引言

3.2 实验部分

3.2.1 仪器及试剂

3.2.2 取代聚乙炔NPs种子乳液的制备

3.2.3 取代聚乙炔/烯类聚合物核壳NPs的制备

3.2.4 聚合物的提取

3.2.5 产物表征方法

3.3 结果与讨论

3.3.1 取代聚乙炔/烯类聚合物核壳NPs乳液制备流程

3.3.2 取代聚乙炔/烯类聚合物核壳乳液NPs形态

3.3.3 聚合反应表征

3.3.4 PSA/PMMA核壳NPs的光学活性

3.3.5 PMMA/PSA交联核壳NPs

3.3.6 实验改进

3.4 本章小结

参考文献

第四章 光学活性螺旋取代聚乙炔/硅有机.无机杂化核壳纳米粒子的制备及异构选择结晶应用

4.1 引言

4.2 实验部分

4.2.1 仪器及试剂

4.2.2 PSA/silica杂化核壳NPs制备

4.2.3 聚合物提取

4.2.4 丙氨酸(alanine)异构选择结晶实验

4.2.5 产物表征方法

4.3 结果与讨论

4.3.1 PSA/silica杂化核壳NPs乳液制备流程

4.3.2 异构选择结晶

4.4 本章小结

参考文献

第五章 具有光学活性螺旋聚合物/无机硅空心双层手性杂化核壳纳米粒子的制备及异构选择结晶应用

5.1 引言

5.2 实验部分

5.2.1 仪器及试剂

5.2.2 PBA-PSA-silica三层核壳NPs及PSA-silica空心手性双层NPs制备

5.2.3 异构选择结晶实验

5.2.4 产物表征方法

5.3 结果与讨论

5.3.1 PBA-PSA-silica杂化核壳NPs乳液制备流程

5.3.2 PBA-PSA-silica三层核壳NPs及PSA-空心手性双层核壳NPs结构形貌

5.3.3 PBA-PSA-silica三层核壳NPs及PSA-silica空心手性双层核壳NPs光学活性

5.3.4 异构选择结晶

5.4 本章小结

参考文献

第六章 取代乙炔类螺旋聚合物构象研究及其油相异构选择结晶应用

6.1 引言

6.2 实验部分

6.2.1 仪器及试剂

6.2.2 单体合成

6.2.3 聚合

6.2.4 异构选择结晶实验

6.2.5 产物表征方法

6.3 结果与讨论

6.3.1 聚合物9的合成及其螺旋结构

6.3.2 共聚物合成及其螺旋结构

6.3.3 异构选择结晶

6.4.本章小结

参考文献

第七章 结论

致谢

研究成果及发表的学术论文

导师简介

作者简介

博士研究生学位论文答辩委员会决议书

展开▼

摘要

螺旋聚合物的设计合成,一直以来都是聚合物科学研究领域的热点和重点之一。在已合成的螺旋聚合物中,有关螺旋聚炔的研究最为深入。尽管如此,制备所得具有螺旋结构聚炔普遍具有低溶解性特征,这就在极大程度上限制了其应用,这是我们所不希望看到的。本课题中,我们摒弃传统有机溶剂溶液聚合方法,首次采用催化微乳液聚合法制备取代乙炔类螺旋聚合物乳液,以其为种子乳液,进而制备一系列具有光学活性新型核壳纳米粒子,并研究其手性诱导异构选择结晶性能。主要研究内容如下:
   采用催化微乳液聚合法在水相体系中制备取代乙炔类螺旋聚合物。制备所得粒子约为70-110纳米左右。粒子由手性取代乙炔螺旋聚合物组成,故能够显示出很强光学活性。聚合在油溶性铑金属催化剂催化条件下,以SDS和曲拉通X—100为乳化剂,DMF为助乳化剂,成功制备得到四种取代乙炔螺旋聚合物,分别为两种手性聚炔丙磺酰胺(poly1和poly2)、一种手性聚炔丙脲(poly3)、一种非手性聚炔丙酰胺(poly4)。制备所得手性聚合物乳液纳米粒子及除去乳化剂助乳化剂所得螺旋聚合物均具有很强光学活性,聚合物具有规整二级结构,相比较采用传统有机溶剂催化聚合制备所得螺旋聚合物,光学活性和稳定性大大增强。催化微乳液聚合能够使聚合物更倾向于生成单手螺旋构造。
   在此基础上,选用手性聚合物1(poly1,PSA)光学活性微乳液,通过在同一体系中引入水相催化微乳液聚合和自由基聚合,制备得到新型核壳纳米粒子乳液。核壳纳米粒子内核由光学活性螺旋取代聚乙炔组成,壳层则由烯类聚合物组成,因此能够表现出很强光学活性。烯类聚合物壳层交联可进一步增强粒子性能。同一体系中引入催化微乳液聚合和自由基聚合思路对于制备新型核壳纳米粒子意义重大,同时也实现了单一种类材料“手性”和“纳米”概念的渗透融合。
   遵循上述制备思路,通过在同一体系中引入取代乙炔单体SA的催化微乳液聚合和TEOS的sol-gel approach,制备得到新型杂化核壳纳米粒子。粒子内核同样由具有光学活性螺旋取代聚乙炔组成,壳层则由无机硅(silica)构成。Silica壳层使制备所得杂化核壳纳米粒子具有很强光学活性和稳定性,进一步保护内核PSA。有机螺旋聚合物和无机硅两大研究领域在同一体系中首次结合,实现了重大突破。所得杂化核壳纳米粒子可用于对丙氨酸异构体手性诱导异构选择结晶分离,具有广阔应用前景。
   同一体系中引入制备。PBA内核的自由基聚合,制备PSA中间壳层的催化微乳液聚合及制备silica外部壳层的sol-gel approach,通过去除PBA内核,制备得到新型空心有机-无机杂化双层纳米粒子,中间壳层由光学活性PSA组成,外层壳由silica构成。空心双层纳米粒子可以实现大小及壳层厚度可控。手性取代聚乙炔PSA中间层使空心双层纳米粒子具有很强光学活性。空心双层纳米粒子作为手性模板可以实现对丙氨酸异构体手性诱导异构选择结晶分离,且手性分离效率较高,这一结果预示着空心纳米粒子在手性材料技术领域所具有的潜在应用前景。TEM,SEM表征可观测到诱导结晶全过程。同一体系中引入自由基聚合、催化微乳液聚合和sol-gel approach制备空心多层纳米粒子方法具有高度重要性和新颖性。
   最后,合成螺旋聚乙炔被用于在有机溶剂均相体系中,对BOC-alanine异构体进行诱导异构选择结晶,并取得了较好的手性分离效果。油相体系中所进行的诱导结晶实验,是人工合成螺旋聚合物应用于诱导结晶的直接证据。
   本课题为螺旋聚合物及基于螺旋聚合物的新型手性材料制备提供了新思路新方法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号