首页> 中文学位 >面向精密定位的平面电容式多自由度位移测量传感器关键技术研究
【6h】

面向精密定位的平面电容式多自由度位移测量传感器关键技术研究

代理获取

目录

声明

致谢

摘要

图目录

表目录

1 绪论

1.1 论文研究背景与意义

1.2 超精密位移测量技术研究现状

1.2.1 超精密位移测量传感器研究现状

1.2.2 多自由度位移的超精密测量方法研究现状

1.2.3 目前多自由度位移测量方法存在的问题与不足

1.3 位移测量信号细分处理方法研究现状

1.3.1 位移测量信号细分方法研究现状

1.3.2 目前的细分方法存在的问题与不足

1.4 论文主要研究内容与框架

1.5 本章小结

2 基于EPCDS的二维位移测量方法研究

2.1 引言

2.2 EPCDS测量原理

2.2.1 基于电容传感器的位移测量原理

2.2.2 EPCDS的一维位移测量原理

2.3 基于EPCDS的二维位移直接解耦测量方法

2.4 基于EPCDS的二维位移直接解耦测量方法实验研究

2.4.1 二维EPCDS测量系统构建

2.4.2 二维位移直接解耦测量系统实验研究

2.4.3 二维位移直接解耦测量系统实验误差讨论

2.5 本章小结

3 EPCDS边缘效应分析及计算模型建立

3.1 引言

3.2 电容传感器边缘效应分析及常见消减方法

3.2.1 边缘效应现象

3.2.2 消减边缘效应影响的常用方法

3.3 基于MAXWELL方程组的EPCDS计算模型

3.4 EPCDS波形误差模型及结构参数优化

3.4.1 EPCDS波形误差模型分析

3.4.2 EPCDS结构参数优化

3.5 本章小结

4 EPCDS的误差源分析及模型搭建

4.1 引言

4.2 EPCDS的误差源分析

4.3 计及误差影响的EPCDS计算模型

4.3.1 平面电容传感器极板不平行时的计算模型

4.3.2 旋转角位移θ2对EPCDS测量精度的影响

4.3.3 倾角位移θx-θy以及Z向位移Zerror对EPCDS测量精度的影响

4.4 二维EPCDS的误差计算模型及解耦分析

4.5 本章小结

5 基于EPCDS的五自由度位移直接解耦测量方法

5.1 引言

5.2 五自由度EPCDS结构设计

5.3 五自由度位移测量的解耦原理

5.3.1 EPCDS电容量计算模型

5.3.2 五自由度位移的解耦计算

5.4 EPCDS的五自由度位移直接解耦仿真

5.4.1 存在旋转角位移θ2的五自由度位移解耦仿真

5.4.2 存在倾角位移θx-θy的五自由度位移解耦仿真

5.4.3 存在多自由度误差的五自由度位移解耦仿真

5.5 本章小结

6 EPCDS信号采集与细分系统软硬件设计

6.1 引言

6.2 EPCDS五自由度位移直接解耦测量系统硬件研制

6.2.1 微弱电容信号的检出与放大

6.2.2 锁相互相关检测技术

6.3 抗干扰技术

6.3.1 干扰信号的来源

6.3.2 抗干扰的措施

6.4 X-Y方向大行程周期性信号细分方法研究

6.4.1 反正切相移细分原理

6.4.2 反正切相移细分方法波形误差量分析

6.5 基于虚拟仪器LabVIEW的软件系统实现

6.6 本章小结

7 基于EPCDS的五自由度位移测量系统构建与实验研究

7.1 基于EPCDS的五自由度位移测量系统构建

7.2 检测电路的稳定性实验

7.2.1 相移电路稳定性测试

7.2.2 检测电路输出稳定性实验

7.3 基于EPCDS的五自由度位移直接解耦测量系统实验研究

7.3.1 EPCDS输出信号波形变形误差实验

7.3.2 水平方向位移X-Y的解耦能力实验

7.3.3 倾角位移θx-θy的解耦实验

7.3.4 旋转角位移θ2的解耦实验

7.4 本章小结

8 总结与展望

8.1 总结

8.2 展望

参考文献

攻读博士学位期间获得的科研成果及参加的科研项目

展开▼

摘要

多自由度的精密位移测量广泛应用于半导体及光学元器件的加工定位、细胞的操纵所需的定位及操纵、超精密机床的运动驱动等,是保证加工、定位、控制精度的关键技术。传统的多自由度精密位移测量系统需要多组单自由度传感器组合而成,存在着结构复杂、误差叠加、价格高等不足,因此研究结构简洁、高精度、低成本的多自由度精密位移测量技术与系统具有重要意义。本论文结合国家自然科学基金“基于平面电容传感器的大行程高分辨率二维位移直接解耦测量方法研究”(No.50875241)和“基于柱状电容传感器的高精度主轴回转误差在线检测方法研究”(No.51275465)等项目,以平面电容传感器为研究对象,研究并建立大行程、高分辨率、多自由度位移直接解耦测量方法与系统。
  第一章简要阐述超精密位移测量技术的国内外研究现状和发展趋势,并就其中的多自由度精密位移测量技术展开进一步的讨论,分析存在的问题与不足;最后提出论文的研究目标、意义以及主要研究内容。
  第二章介绍电容传感器实现位移测量的工作原理,提出可以实现大行程位移测量要求的一维栅式平面电容位移传感器(Encoder-like Planar Capacitive Displacement Sensor,EPCDS)。并在此基础上,设计基于EPCDS的大行程、高分辨率二维位移直接解耦测量方法;构建二维EPCDS实验系统,以验证所提出的二维位移直接解耦测量方法;开展误差分析,提出改进的方法。
  第三章分析电容传感器产生边缘效应的原因,并简要阐述目前消减边缘效应对测量精度影响的几种方法。针对论文提出的EPCDS,利用MAXWELL方程组建立电容量计算模型,通过参数优化,减小并消除边缘效应对传感器测量精度的影响。
  第四章从原理上剖析影响二维EPCDS测量精度的主要误差源。通过理论分析,建立二维EPCDS的误差模型,量化各个误差源对测量精度的影响,并尝试通过合理的算法减小并消除传感器误差对测量精度的影响。
  第五章在基于EPCDS的X-Y二维位移直接解耦测量方法的基础上,采用改进的对称化结构设计,提出新型的多自由度EPCDS。在X-Y方向上各增加两组传感电容电极,使得X-Y方向各有四组传感电容,运用单传感器实现五自由度位移的直接解耦测量,包括水平运动方向的大行程线位移(X,Y),以及三个旋转自由度的小行程角位移(θx,θy,θz),并通过仿真分析进行验证。
  第六章主要阐述EPCDS信号采集与细分系统的软硬件设计,包括微弱电容信号检测电路的设计以及基于LabVIEW的细分算法开发。首先基于运算放大器采用锁相自相关检测原理消减测量电路中噪声对微弱电容信号的影响,实现微弱电容信号的检测;其次设计反正切相移细分算法;最后基于LabVIEW软件构建五自由度位移直接解耦测量软件系统。
  第七章搭建面向超精密定位的平面电容式五自由度精密位移测量传感器实验装置;然后针对硬件检测电路的稳定性从相移电路、检测电路输出两个方面展开相关实验;最后展开五自由度位移直接解耦测量的对比实验,通过对比不同运动情况下各自由度位移测量的精度、稳定性及解耦性,验证本文提出X-Y-θx-θy-θz五自由度精密位移直接解耦测量方法的正确性与有效性。
  第八章对论文的研究工作进行总结,并对后续应开展的研究工作进行讨论。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号