首页> 中文学位 >模块化多电平换流器在HVDC应用的若干关键问题研究
【6h】

模块化多电平换流器在HVDC应用的若干关键问题研究

代理获取

目录

声明

致谢

摘要

1 绪论

1.1 直流输电技术的发展历程

1.1.1 常规直流输电技术

1.1.2 基于电压源换流器的高压直流输电技术

1.1.3 中国的直流输电技术发展概况

1.2 基于模块化多电平换流器的高压直流输电技术概况

1.2.1 模块化多电平换流器的技术背景

1.2.2 工程应用情况

1.2.3 MMC-HVDC的优势与不足

1.3 本文的主要工作

2 MMC的基本原理和数学模型

2.1 主电路拓扑结构

2.2.1 换流器结构

2.2.2 基于MMC的HVDC系统结构

2.2 MMC的数学模型

2.2.1 MMC的开关模型

2.2.2 MMC的平均值模型

2.2.3 MMC的小信号模型

3 MMC的阀组级控制

3.1 基于脉宽调制的阀组级控制

3.1.1 载波移相脉宽调制(Phase Shift SPWM)的调制控制

3.1.2 采用PWM控制时的子模块均压控制

3.2 基于最近电平调制的阀组级控制

3.2.1 NLM法的电平生成原理

3.2.2 采用NLM法时的子模块电压平衡控制:控制时机的产生

3.2.3 采用NLM法时的子模块电压平衡控制:选择性投切策略

3.3 改进的NLM阀组级控制

3.3.1 n可控的NLM调制控制

3.3.2 改进型n可调的NLM调制控制

3.3.3 可用于全H桥子模块的NLM调制控制

4 MMC-HVDC的换流器级和系统级控制

4.1 MMC-HVDC换流器级控制

4.1.1 MMC的交流侧有功无功电流解耦控制与参数设计方法

4.1.2 MMC的直流侧电流控制与参数设计方法

4.1.3 MMC-HVDC的基本输出控制

4.2 MMC-HVDC系统级控制

4.2.1 典型的MMC-HVDC系统级控制

4.2.2 含直流功率类控制的系统级控制

4.2.3 其他运行模式下的系统级控制

5 功率单向传输的低成本柔性直流输电系统

5.1 非储能型ULMMC-HVDC的拓扑与基本原理

5.2 电容储能的ULMMC-HVDC系统

5.3 电池储能的ULMMC-HVDC系统

6 大规模MMC-HVDC系统的电磁暂态仿真技术

6.1 MMC-HVDC主电路系统的快速电磁暂态仿真模型

6.1.1 全H桥或半H桥子模块的MMC快速电磁暂态仿真模型

6.1.2 带有电池的子模块快速电磁暂态仿真模型

6.1.3 35kV/±40kV/480SM柔性直流输电系统电磁暂态仿真模型

6.2 MMC-HVDC的控制系统优化仿真

6.3 提高大规模电力电子系统电磁暂态仿真效率的其他措施

7 MMC的验证样机开发

7.1 模块化多电平换流器验证样机设计指标

7.2 主电路及子模块设计

7.3 子模块的测控信号复用电路

7.3.1 子模块的测控信号复用电路基本原理

7.3.2 测控信号复用电路与子模块的接口

7.4 控制系统设计

7.4.1 全比例MMC控制系统结构

7.4.2 监控工作站设计

7.4.3 主控制器设计

7.4.4 阀组级控制器功能设计

7.5 实验测试结果及分析

7.5.1 稳态运行实验

7.5.2 功率阶跃实验

8 总结与展望

8.1 主要结论

8.2 有待继续研究的问题

参考文献

攻读博士学位期间的主要科研成果

作者简历

展开▼

摘要

电力电子技术的不断发展为建设智能、清洁、高效的现代电力系统提供了强大的支持,在高压直流输电(HVDC)和柔性交流输电(FACTS)领域均取得了广泛的应用。模块化多电平换流器(Modular Multilevel Converter,MMC)作为新一代高压大功率换流装置,当其在HVDC中应用时,具有输电容量大,有功无功可独立控制,交流输出无需复杂的滤波装置,可靠性高,可向无源或弱受端系统输电等诸多优点,被认为是柔性直流输电的代表性技术。本文在前人研究成果的基础上,重点研究MMC在HVDC中应用的关键问题。
  MMC电路中具有大量电力电子开关和直流电容器,其数学模型呈高阶、离散、非线性的特点,难以建立准确的数学模型进行理论分析。以其物理电路模型为基础,建立MMC的开关模型,通过简化程度不同的三次降阶化简和坐标变换,推导MMC的平均值模型,通过小信号线性化,推导出低阶、连续、线性的MMC的小信号模型。提出的建模方法明确了推导过程中的简化条件,以便于根据不同的分析要求选择对应的简化条件。提出的空间状态数学模型具有直流侧输出电压控制量,使MMC的数学建模更加完整,并为n可控的调制方法提供了理论基础。
  MMC在HVDC中应用时,换流器主要采用最近电平调制法(Nearest Voltage Level Modulation,NLM)进行阀组级控制。但何时及如何实施其中的选择性子模块投切策略,以及如何避免两次相邻投切操作产生冲突,需要详细研究。定义了NLM法进行子模块电压选择性投切的控制时机,给出了控制时机的产生算法和冲突避免规则。在定义基础上,根据不同类型的控制时机分别提出了相应的子模块选择方法,并对它们进行了对比,给出了控制时机的协调搭配方法。提出的正负极间子模块数n可控的NLM调制方法,可以充分利用MMC中的冗余子模块将其直流侧在一定条件下等效为可控电压源,为MMC直流电流控制提供了实现途径。对提出的NLM法进行了进一步改进,提出了n可以为偶数也可以为奇数的改进型NLM法和适用于带有全H桥子模块的MMC的NLM调制方法,对NLM的应用范围进行了拓展。
  n可控的NLM调制法可以将MMC的交流侧和直流侧均等效为一个受控电压源,利用这一特性可以进一步丰富MMC的控制手段,以实现更好的系统特性。提出了MMC直流电流直接控制及其参数设计方法,以及当内环采用直流电流控制时外环输出控制器的参数设计方法,并给出了当系统包含MMC直流侧直接电流控制时的控制策略和功率平衡限制条件。
  电力系统中存在功率单向输送的情况,此时可以采用送端使用二极管整流器,受端采用MMC逆变器的ULMMC-HVDC结构,降低系统复杂度和成本,提高系统可靠性。提出电容储能的ULMMC-HVDC利用MMC中存在的大量子模块,将其与EDLC相结合。弥补了EDLC自放电率较大、耐压较低的缺点,使子模块电压平衡控制容易实现,能量分布存储使可靠性提高且易于维护。提出了能量管理控制器及其参数设计方法,用于限制存储在换流器中的能量在设定的上下限之间。提出电池储能的ULMMC-HVDC,可以使装置整体实现较高的额定电压接入电力系统,且便于电池元件的维护、更换。相较于电容储能,进行长期储能时可以得到更高的存储容量和充放电效率。提出了子模块和子模块组电池荷电状态(State of Charge,SOC)平衡控制及其参数设计方法。
  大规模MMC电磁暂态仿真模型中存在大量子模块和电力电子元件造成模型阶数过高、仿真效率过低的问题,需要研究提高仿真效率的方法。在MMC仿真电路模型与MMC开关函数数学模型完全等效的前提下,通过改善子模块快速仿真模型和控制系统优化仿真算法等手段,极大地提高了仿真效率,从而使大规模MMC-HVDC的仿真研究变得可能。设计了MMC-HVDC控制系统的优化仿真算法和数据结构,通过两次排序解决子模块选择性投切问题和单个子模块开关频率过高的避免机制。
  实际MMC装置中存在大量子模块,硬件上需要大量高吞吐能力IO进行测量控制,使控制难度增加;MMC控制系统一般由多控制器协调控制,但这些控制器间需要交互大量实时和非实时信号,难以保证同时可靠传输。研制了由400VAC/+400VDC/3kVA/288-SM的小模型主电路和全比例控制系统组成的MMC验证样机。设计了MMC验证样机的硬件和控制软件结构。研究并设计了子模块测控信号复用电路,在不增加通讯负担的前提下,仅通过增加简单的数字电路,使IO数量与光纤通道数大为减少,降低了装置成本和实现难度。提出了控制系统的双总线结构,通过高速数字IO总线和CAN总线分别传输实时和非实时信号,解决了实控制器间数据交互问题。进行了MMC逆变并网实验,实验结果验证了MMC基本原理和控制策略,证明了MMC验证样机各项性能符合设计指标。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号