首页> 中文学位 >血糖波动诱导线粒体通透性转换在非酒精性脂肪肝肝细胞凋亡中的作用
【6h】

血糖波动诱导线粒体通透性转换在非酒精性脂肪肝肝细胞凋亡中的作用

代理获取

摘要

非酒精性脂肪肝(NAFLD)是一种无过量饮酒史,但病理学改变类似酒精性脂肪肝,以肝细胞脂肪变性和脂质贮积为特征的临床综合征。临床研究发现,2型糖尿病(T2DM)患者发生NAFLD风险增加,且糖尿病患者更易从单纯性非酒精性脂肪肝进展为非酒精性脂肪性肝炎(NASH)及肝纤维化,但机制不明。氧化应激和肝细胞凋亡是NAFLD进展的核心环节,氧化应激可导致炎症因子释放增多,多种促凋亡因子表达增强,肝细胞发生炎症、凋亡或坏死,使病程向NASH及肝纤维化进展。而线粒体通透性转换(MPT)是调控细胞凋亡的“生命闸门”。
  血糖波动异常是糖代谢紊乱的重要标志之一。多项临床研究表明,血糖波动指数升高是引起脂质过氧化物水平升高的最主要因素,改善血糖水平或减少血糖波动幅度都有助于减少氧化应激引起的损害。那么在T2DM患者中,糖尿病是否可能通过波动性高血糖的形式诱发氧化应激促进肝细胞凋亡从而促进NAFLD的进展呢?
  本研究拟建立肝细胞脂肪变性模型和糖尿病合并NAFLD小鼠模型,并在体内外模拟血糖波动,以透射电镜技术、流式细胞术、TUNEL技术、病理染色、荧光探针及蛋白免疫印迹等技术,观察波动性高血糖对肝细胞凋亡、肝组织炎症性坏死以及纤维化的作用;并探讨波动性高糖诱发的氧化应激是否通过诱导MPT发生损伤线粒体形态和呼吸链功能,并启动细胞色素C介导的线粒体凋亡途径来促进肝细胞凋亡,以期能揭示糖尿病促进NAFLD进展的机制。
  第一部分非酒精性脂肪肝小鼠模型中血糖波动对于肝细胞的凋亡的作用研究
  目的:
  建立2型糖尿病(T2DM)合并非酒精性脂肪肝(NAFLD)小鼠模型,体内模拟血糖波动,观察波动性高血糖(IHG)对肝组织坏死性炎症、纤维化和肝细胞凋亡的作用,并探讨IHG诱发的氧化应激是否通过损伤线粒体功能,并启动细胞色素C(Cyt c)介导的线粒体凋亡途径来促进肝细胞凋亡。
  方法:
  利用高脂饮食(HFD)诱导C57BL/6J小鼠建立T2DM合并NAFLD小鼠模型,并通过每日2次腹腔葡萄糖注射(3g/kg)或同体积生理盐水(NS)注射建立高脂饮食波动性高血糖(HFD+F)和持续性高血糖小鼠模型(HFD+NS)。首先监测对照组小鼠(普通饲料喂养并NS注射,STD+NS)、HFD+NS组和HFD+F组小鼠体重、血糖、胰岛素及肝酶谱改变;其次,利用病理染色观察IHG对小鼠肝脏脂质沉积、肝脏纤维化,肝脏脂质过氧化水平的影响,再者,利用TUNEL和WesternBlotting技术观察IHG对于肝细胞凋亡的影响,最后,利用Western Blotting及生化法观察IHG对于线粒体功能,如Cytc的释放、ATP的产生的影响。
  结果:
  1.HFD喂养较普通饮食(STD)喂养可显著增加小鼠体重、诱导糖耐量异常、胰岛素抵抗,并增加肝脏脂质沉积、肝酶水平以及肝脏纤维化(P<0.01)。但上述指标在HFD+F与HFD+NS小鼠间并无差异(P>0.05)。
  2.HFD喂养较STD喂养可增加小鼠肝细胞凋亡比率及凋亡相关蛋白,如Bax、Cleaved caspase9和Cleaved caspase3的表达(P<0.01),而HFD+F小鼠肝细胞凋亡水平显著高于HFD+NS小鼠(P<0.01)。
  3.HFD喂养较STD喂养可增加小鼠脂质过氧化水平,丙二醛(MDA)、壬烯(HNE)含量显著升高(P<0.01),而IHG可进一步升高小鼠脂质过氧化水平(P<0.05 vs.HFD+NS)。
  4.HFD+NS小鼠较STD+NS小鼠胞浆Cyt c含量及肝脏ATP产生显著升高(P<0.01),HFD+F组小鼠胞浆Cyt c含量进一步更高(P<0.01),而肝脏ATP合成则较HFD+NS下降(P<0.01)。
  结论:
  1.HFD喂养的小鼠糖耐量、胰岛素敏感性、肝脏脂质沉积、肝酶水平、肝脏纤维化程度、肝细胞凋亡、脂质过氧化水平如MDA、HNE含量、线粒体Cyt c释放及ATP产生较STD喂养小鼠明显增加。
  2.尽管予HFD喂养小鼠IHG后,小鼠糖耐量、胰岛素敏感性、肝脏脂质沉积、肝酶水平以及肝脏纤维化程度上与单纯HFD喂养小鼠比较并无差异,但IHG小鼠肝细胞凋亡,脂质过氧化水平,以及线粒体Cyt c释放明显增高,而ATP的产生下降。表明在T2DM伴NAFLD的小鼠模型中,IHG可通过增加肝脏氧化应激水平、能量合成障碍、线粒体功能受损而增加肝细胞凋亡,而IHG增加肝细胞凋亡的具体机制有待体外实验进一步研究。
  第二部分血糖波动诱导线粒体通透性转换促进脂肪变性肝细胞凋亡的作用研究
  目的:
  建立肝细胞脂肪变性模型,并在体外模拟血糖波动。观察波动性高糖(IHG)对棕榈酸(PA)诱导肝细胞凋亡的作用;并探讨IHG诱发的氧化应激是否通过诱导线粒体通透性转换(MPT)发挥作用。
  方法:
  L02细胞分别用:①正常血糖组(NG,10% FBS1640培养液+葡萄糖5.5mmol/l);②正常血糖脂肪变性组(NG+P,10% FBS1640培养液+0.125mM棕榈酸);③持续高糖组(SHG,10% FBS1640培养液+葡萄糖30.0mmol/l);④持续高糖脂肪变性组(SHG+P,10% FBS1640培养液+0.125mM棕榈酸);⑤波动性高糖组(IHG,10% FBS1640培养液+葡萄糖5.5mmol/l和30.0mmol/l,每间隔12h更换1次);⑥波动性高糖脂肪变性组(IHG+P,10% FBS1640培养液+0.125mM棕榈酸+葡萄糖5.5mmol/l和30.0mmol/l,每间隔12h更换1次)培养72h。利用油红染色及荧光探针观察细胞脂肪变性情况,利用流式细胞计数和Western blotting检测L02细胞凋亡、ROS产生,线粒体膜电位(△ψm)及细胞色素C(Cyt c)释放情况,并利用电镜观察细胞超微结构的改变。予环孢霉素A(CsA)抑制MPT,观察关闭MPT孔是否能逆转肝细胞的氧化应激及凋亡。
  结果:
  1.经过72h培养,PA处理组L02细胞内脂滴明显增加,但不同糖浓度间脂滴数量和大小并无显著差异。
  2.在PA存在时,与NG组比较,SHG可诱导肝细胞凋亡比率及凋亡相关蛋白,如Cleaved caspase9、Cleaved caspase3及Cleaved PARP表达增加(P<0.05),而IHG可进一步恶化肝细胞凋亡(P<0.05 vs.SHG+P组);但单纯SHG或IHG对L02细胞凋亡并无诱导作用(P>0.05)。
  3.在PA存在时,与NG组比较,SHG处理后ROS产生及线粒体氧化应激增加(P<0.05),且IHG较SHG更易诱发氧化应激(P<0.05);但单纯SHG或IHG对L02细胞ROS产生及线粒体氧化应激并无明显诱导作用(P>0.05)。
  4.SHG+P组较NG+P组电镜下线粒体微结构异常(线粒体内嵴减少、基质肿胀并出现空泡),提示MPT孔开放;肝细胞线粒体功能障碍更为显著,表现为△ψm下降、线粒体Cyt c释放增加、而IHG+P对线粒体形态和功能损伤作用较SHG更强。但在不存在PA时,不同糖浓度对线粒体功能无明显影响。
  5.予CsA预处理关闭MPT孔则能阻断SHG和IHG对脂肪变性肝细胞ROS产生、线粒体形态和功能异常及肝细胞凋亡的诱导作用。
  结论:
  在脂毒性的基础上,IHG较SHG更易诱导肝脏氧化应激和线粒体损伤,并启动Cyt c介导的线粒体凋亡途径从而促进肝细胞凋亡;而MPT在其中起重要介导作用,特异性关闭MPT能够阻断PA与IHG诱导的ROS产生、线粒体形态和功能改变及肝细胞凋亡。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号