首页> 中文学位 >非制冷红外焦平面CMOS读出电路设计与实现研究
【6h】

非制冷红外焦平面CMOS读出电路设计与实现研究

代理获取

目录

封面

声明

中文摘要

英文摘要

目录

主要符号表

第一章 绪论

1.1 非制冷红外成像技术

1.2 非制冷红外焦平面CMOS读出电路

1.3 国内外研究进展

1.4 本文的主要工作及内容安排

第二章 非制冷热释电320×240读出电路设计与实现

2.1 热释电探测原理介绍

2.2 热释电探测器国内外发展动态

2.3 热释电读出电路设计

2.4 热释电读出电路耐高温设计

2.5 热释电RTIA读出电路设计

2.6 本章小结

第三章 微测辐射热计160×120读出电路设计与实现

3.1 微测辐射热计探测原理及发展方向

3.2 微测辐射热计模型建立

3.3 微测辐射热计读出电路设计

3.4 微测辐射热计读出电路版图设计

3.5 芯片测试结果及分析

3.6 本章小结

第四章 短波红外320×256快照式读出电路设计与实现

4.1 短波红外探测原理

4.2 短波红外320×256读出电路设计

4.3 短波红外读出电路版图设计

4.4 短波读出电路测试结果及分析

4.5 本章小结

第五章 结论

致谢

参考文献

博士在学期间的研究成果

展开▼

摘要

与制冷红外成像系统相比,非制冷红外成像系统可在室温工作,省掉了昂贵且笨重的制冷设备,从而大大减小了系统的体积、成本和功耗;此外,还可提供更宽的频谱响应和更长的工作时间。国外研制机构已经为军事用户提供了大量成本更低、可靠性更高的高灵敏非制冷红外成像仪。
  但我国的非制冷红外成像研究与生产起步较晚,且受到工业基础制约,技术远滞后于国外,而市场需求却日益增加,因此发展非制冷红外成像技术已刻不容缓。本文基于以上背景,针对非制冷红外成像系统的核心器件——CMOS焦平面读出电路(ROIC)展开了设计与实现研究。
  首先在充分了解国内外最新研究动态后,作者作为主研参与了国家973 XXX项目(编号:51313XXX),自主设计并流片验证了单片式320×240非制冷热释电红外焦平面阵列(IRFPA)读出电路,特别是自主设计并验证了单片式耐高温非制冷红外CMOS读出电路的工艺流程,解决了铁电探测材料高温退火与CMOS工艺不兼容的问题。之后作者作为主研又研制了另外两款具有广阔市场前景的红外CMOS焦平面读出电路,即非制冷微测辐射热计160×120读出电路,以及非制冷短波红外320×256多功能快照式读出电路。
  在以上课题研究中,针对不同类型的非制冷红外探测器,自主设计了相适应的读出电路结构,并全面考虑版图、工艺以及对探测器的接口等问题。
  本文主要的贡献和创新点如下:
  1、在铁电型非制冷红外读出电路研制中,提出了一种与标准CMOS工艺兼容的耐熔金属硅化物连线结构,并通过320×240大阵列读出电路的设计、流片及测试验证,获得了有良好耐高温特性的低阻互连线结构,解决了铁电型IRFPA的单片集成耐高温问题。经查新验证,此方法国内外未见报道,已申请中国发明专利并获授权,专利号:200610021450.4。
  2、针对热释电探测单元是阻抗极高的容性元件,提出了一种基于有源电阻的电阻反馈跨导放大型(RTIA)红外焦平面读出电路结构,该设计采用亚阈区MOS管实现1011Ω以上的有源大电阻,能与热释电红外探测器的阻抗良好匹配,结合两管共源放大器对热释电微弱信号进行高增益电流放大。相对于采用特殊高阻材料的RTIA,本电路不附加材料和工艺,且所采用的三管前置读出结构适用于大阵列热释电焦平面探测器。
  3、基于前述第2点提到的RTIA,提出采用浅耗尽管(Native MOSFET)作为有源大反馈电阻实现RTIA,因为Native MOS在工艺流程中不增加掩膜版,而且相比工作在亚阈区的增强型MOS,Native MOS的栅极直接接地,省去了偏置电路,且增强了电阻稳定性。
  4、在非制冷短波320×256红外焦平面读出电路研制中,本文采用了应用更广泛的快照工作模式,即要求阵列中的所有探测单元同时积分,并将积分信号保存在单元内部后读出。虽然这种模式可以自由调节积分时间,使信号增强,满足高分辨率、高灵敏度、高速红外探测需求;但是在芯片设计中,要求有限的像元面积内包含积分放大电路和采样保持电路。而作者在缺乏参考资料和设计细节的情况下,完成了该芯片的自主设计和流片验证,采用共源共栅(Cascode)电容反馈跨导放大(CTIA)结构代替传统两级运放 CTIA,并同时在30×30μm2像元面积内集成采样保持电路、缓冲器、反饱和功能,实现了快照式读出,通过调节积分电容和积分时间,可将动态范围成倍扩展。同时,基于格雷码原理设计的控制电路,实现了动态窗口读出,图像翻转,1、2、4路输出等多种实用功能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号