首页> 中文学位 >ZnO和GaP基化合物半导体材料的MOVPE生长及高亮度发光二极管窗口层结构的改进
【6h】

ZnO和GaP基化合物半导体材料的MOVPE生长及高亮度发光二极管窗口层结构的改进

代理获取

目录

文摘

英文文摘

前言

CHAPTER1 Epitaxial techniques of semiconductor materials

1.1 Epitaxial growth

1.2 HomoEpitaxy and heteroEpitaxy

1.3 Peculiarity of heteroepitaxial growth

1.4 Epitaxial techniques

1.4. 1 Liquid phase epitaxy (LPE)

1.4.2 Vapor-phase Epitaxy(VPE)

1.4.3 Molecular beam Epitaxy(MBE)

1.4.4 Metalorganic vapor phase Epitaxy(MOVPE)

1.4.5 Chemical beam Epitaxy(CBE)

1.4.6 Ion beam Epitaxy(IBM)

1.4.7 Atomic layer Epitaxy(ALE) technique

1.5 Semiconductor film materials

1.6 Requirements for device manufacture to Epitaxy wafer

References

CHAPTER2 Overview of the MOVPE technique

2.1 MOVPE technique

2.2 MOVPE equipment

2.3 Fundamental aspects of MOVPE process

2.4 Some aspects concerning MOVPE technique to be further explored

References

CHAPTER3 Crystal quality and optical properties of GaP grown by atmospheric pressure and low pressure MOVPE

3.1 Epitaxial growth of GaP on GaAs by MOVPE

3.1.1 Experimental procedures of Epitaxial growth

3.1.2 Thermodynamic analysis of GaP grown on GaAs

3.2 Crystal characterization of GaP epilayer on GaAs substrate

3.2.1 Effects of growth temperature and Ⅴ/Ⅲ ratio on surface morphology

3.2.2 Effects of growth temperature and Ⅴ/Ⅲ ratio on the crystal perfection of GaP epilayer

3.2.3 Discussion of effects of growth factors on the crystal quality of GaP epilayer

3.3 Backscattering spectra of GaP epilayer grown on GaAs

3.4 Raman spectra of GaP epilayer

References

CHAPTER4 Crystal characterization and optical properties of AlxGa1-xP grown on GaAs by AP-MOVPE

4.1 Experimental procesures of epitaxial growth of AlxGa1-xP on GaAs

4.2 Crystal quality of AlxGa1-xP epilayer

4.2.1 Effect of GaP buffer layer on the crystalline quality of AlxGa1-xP epilayer

4.2.2 Effect of the thickness of GaP buffer layer on the crystalline quality of AlxGa1-xP epilayer

4.2.3 Effect of substrate orientation on the crystal quality of AlxGa1-xP epilayer

4.2.4 Effect of growth temperature on the crystal quality of AlxGa1-xP epilayer

4.2.5 Effect of input Ⅴ/Ⅲ ratio on the crystal quality of AlxGa1-xP epilayer

4.3 Surface roughness of AlxGa1-xP epilayers

4.4 Thermodynamics of AlxGa1-xP epitaxial growth

4.5 Flow dynamics in MOVPE reactor cell

4.5.1 A isothermal system

4.5.2 Growth rates in a tilted susceptor

4.6 Growth rate of AlxGa1-xP epilayer

4.7 Back-scattering spectra of Al0.26Ga0.74P epilayer

4.8 Rarman spectra of Al0.21Ga0.79P epilayer

4.9 (Al0.2Ga0.8P)m/(GaP)m multi-layer structure

4.9.1 Growth of (Al0.2Ga0.8P)m/(GaP)m multi-layer structure

4.9.2 Reflection characteristics

References

CHAPTER5 Preliminary study on optoelectronic characterization of undoped and Al-doped ZnO heteroEpitaxiallly grown by AP-MOVPE

5.1 Heteroepitaxial growth of ZnO film

5.1.1 Selection of substrate for ZnO heteroepitaxial growth by pattern recognition methods

5.1.2 Heteroepitaxial growth procedures for undoped ZnO on GaAs and glass

5.1.3 Heteroepitaxial growth procedures for undoped and Al-doped ZnO films on Si

5.2 Crystal quality and properties of undoped ZnO films on GaAs or glass substrates

5.2.1 Undoped ZnO/GaAs growth with a preferential orientation

5.2.2 Resistivity of undoped ZnO/GaAs

5.2.3 Optical transmittance of ZnO epilayer grown on glass

5.3 Crystal quality and properties of undoped and Al-doped ZnO films grown on Si

5.3.1 Undoped and Al-doped ZnO growth with a preferred orientation

5.3.2 Electrical properties of undoped and Al-doped ZnO/Si

5.3.3 Raman spectra ofundoped ZnO/Si

References

CHAPTER6 Improvement of the window layer of high-efficiency visible LEDs

6.1 Present situation and development tendency of L-EDs

6.2 Design of a LED chip

6.3 Window layer of a LED chip

6.3.1 Current spreading effect of a layer

6.3.2 Present situation of window layer for a LED chip

6.4 Delta-doping of GaP epilayer

6.4.1 Effect of a δ -doping layer upon current spreading

6.4.2 Growth of δ -doping GaP/GaAs heterostructure

6.4.3 Measurement procedure and result of δ -doping GaP/GaAs heterostructures

6.5 Enhancement of current spreading by ITO film

6.5.1 A tentative idea of the ITO window layer of LEDs

6.5.2 Tunneling junction

6.5.3 Growth procedures of ITO/GaP/GaAs heterostructures

6.5.4 Measurement of current-voltage characteristic of ITO/GaP tunneling junction

References

致谢

个人简历

攻读博士学位期间发表的主要研究论文

在博士后流动站工作期间发表的研究论文及专利申请

展开▼

摘要

利用金属有机化合物气相外延(MOVPE)设备进行了GaP/GaAs、AlGaP/GaAs、AlGaP/GaP/GaAs、ZnO/GaAs、ZnO/Si等本征或掺杂异质结构材料的低压和常压外延生长.利用光学显微镜、扫描电子显微镜、双晶X射线衍射仪、背散射分析等设备对以上异质外延材料的晶体结构完整性,如表面形貌、表面粗糙度、界面特征,以及与生物温度、Ⅴ/Ⅲ比等生长条件的关系进行了研究;采用四探针及范得堡方法对非掺杂和Al掺杂的ZnO外延层的电学性质,如电阻率、载流子浓度、霍尔迁移率,以及与生长条件的关系进行了研究.利用双光束分光光度计和剌曼光谱仪对以上外延材料的光学性质,如紫外及可见光区域的反射率、具有喇曼活性的光学声子振动模式等方面进行了研究.利用δ掺杂技术及隧道效应原理对镁掺杂GaP外延薄膜和甸锡氧化物(ITO)增强电流扩展作用的可行性进行了探讨.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号