首页> 中文学位 >基于SPPs的环形金属微纳传感器的光学特性研究
【6h】

基于SPPs的环形金属微纳传感器的光学特性研究

代理获取

目录

声明

摘要

第1章绪论

1.1表面等离激元的基本理论

1.1.1表面等离激元的定义和分类

1.1.2表面等离激元的基本性质

1.1.3表面等离激元的激发方式

1.2表面等离激元的国内外研究现状

1.3本课题的研究内容和意义

1.3.1课题来源

1.3.2研究目的和意义

1.3.3研究主要内容

第2章表面等离激元的研究分析方法

2.2.1麦克斯韦方程组的差分离散

2.2.2数值稳定性分析

2.2.3吸收边界条件

2.2.4网格划分

2.3光学模拟仿真软件

2.4本章小结

第3章周期平底环形凹腔阵列光学特性的研究

3.1前言

3.2结构模型和仿真

3.3反射谱以及截面场分布的分析

3.4不同参数对共振吸收峰波长的调控

3.4.1内壁银层厚度、外壁银层厚度、上表面银层厚度对共振吸收峰波长的调控

3.4.2环境介质折射率对共振吸收峰波长的调控

3.4.3入射光偏振方向对结构光学性质的影响

3.4.4金属材料对结构光学特性的影响

3.5本章小结

4.1前言

4.2结构模型和仿真

4.3反射谱以及截面场分布的分析

4.4不同参数对共振吸收峰的影响

4.4.1圆环槽腔的内半径、外半径、圆环槽腔的垂直高度和环槽腔底部突出宽度对共振吸收峰波长的调控

4.4.2环境介质折射率对共振吸收峰波长的调控

4.4.3入射光偏振方向对结构光学性质的影响

4.4.4金属材料对结构光学特性的影响

4.5本章小结

第5章非对称圆环槽-圆环狭缝结构的干涉共振光谱及传感特性

5.1前言

5.2结构模型和仿真

5.3结构的光学特性

5.4结构的传感特性

5.5本章小结

第6章结束语

参考文献

在读期间发表的学术论文及研究成果

致谢

展开▼

摘要

近年来,现代微纳加工技术飞速发展,与此同时集成光学发展进程迅猛,表面等离基元(Surface Plasmon Polarton,简记为SPPs)受到了广大研究学者的重视和关注。表面等离激元处在金属和介质的界面处,是由于光与金属表面的自由电子之间的相互作用而形成的,是一种特殊的电磁波。近年来,金属微纳结构的SPPs特性研究在实验及理论上取得了重要的发展。伴随着纳米级结构制备工艺的迅猛发展,有关激发SPPs的金属微纳结构的研究已经成为热点。模拟仿真配合实验,能够节约大量的时间,并能从本质上认识其发生的本质。本文设计并提出了三种基于表面等离激元的金属环形微纳结构,并通过模拟仿真探究了这三种结构的光学特性和基本原理。
  提出了一种六角周期排布的平底环形凹腔阵列,使用基于时域有限差分算法的模拟仿真软件系统地研究了其光学特性。仿真结果表明,线性偏振光能够在该结构的金属表面激发表面等离激元,并形成共振。共振波长与平底环形凹腔结构的参数(内壁银层厚度、外壁银层厚度、上表面银层厚度、环境介质折射率n、金属材料)相关,调节该结构的参数可使共振波长在400-2000nm范围内可调。由于该结构的六角密排和圆对称特性,当入射光偏振角度改变时,结构的光学特性不变。用作折射率传感器时,该结构的环境折射率灵敏度达1005nm/RIU,品质因子达30。
  设计提出的一种周期圆环槽腔阵列,较上述结构更加结构简单,折射率灵敏度大大提高。通过模拟仿真反射谱、电场分布和电荷分布,证实了多重柱状等离子体激元可以通过线性偏振光在该周期圆环槽腔阵列中激发且产生共振,其中讨论的两个吸收峰归功于同轴腔中法布里-珀罗谐振腔,可以用相位匹配的条件来解释。我们可以通过改变结构的参数来调节反射谱,调节结构的折射率灵敏度。由于该结构的六角密排和圆对称特性,当入射光偏振角度改变时,结构的光学特性不变。用作折射率传感器时,该结构的环境折射率灵敏度高达1865nm/RIU。
  在非对称圆环结构的基础上,设计了一种基于非对称圆环槽和圆环狭缝的干涉型表面等离激元传感器,设计了结构,通过时域有限差分法(FDTD)研究了其干涉光谱和传感原理,得到了仿真结果和光学响应特性。该结构主要利用非对称半圆环凹槽-环形狭缝的结构,形成两干涉臂、四光束干涉的表面等离激元传感器。作为非对称圆环槽-圆孔干涉仪和线性槽-缝-槽干涉仪的一般化结构,非对称圆环槽-圆环狭缝干涉仪有更强的光透射和更好的传感特性,传感灵敏度最高为线性槽-缝-槽干涉仪的10倍。仿真结果证实了该干涉光谱随环境折射率变化偏移,展现了良好的传感特性,有助于微型生化传感器的发展。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号