首页> 外文会议>Symposium on Recent Advances in Experimental Mechanics Jun 23-28, 2002 Virginia Polytechnic Institute and State University >EXPERIMENTAL AND NUMERICAL INVESTIGATION OF SHEAR-DOMINATED INTERSONIC CRACK GROWTH AND FRICTION IN UNIDIRECTIONAL COMPOSITES
【24h】

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF SHEAR-DOMINATED INTERSONIC CRACK GROWTH AND FRICTION IN UNIDIRECTIONAL COMPOSITES

机译:单向复合材料剪切为主的声波裂纹扩展与摩擦的实验与数值研究

获取原文
获取原文并翻译 | 示例

摘要

Dynamic crack growth in unidirectional graphite/epoxy composite materials subjected to in-plane impact loading is investigated experimentally and numerically. The experiments are conducted using CGS (Coherent Gradient Sensing) Interferometry in conjunction with high-speed photography to visualize the crack growth events. Cracks are found to propagate at subsonic speeds in the Mode-Ⅰ case, whereas in both mixed mode and Mode-Ⅱ the crack tip speed clearly exceeds the shear wave speed of the laminate. For these intersonically growing shear (Mode-Ⅱ) cracks a shock wave emanating from the crack tip is observed. This provides direct evidence that the cracks propagate faster than the shear wave speed of the composite. The crack tip speed is initally observed to jump to a level close to the axial longitudinal wave speed along the fibers (7500 m/s) and then to stabilize to a lower level of approximately 6500 m/s. This speed corresponds to the speed at which the energy release rate required for shear crack growth is non-zero as determined from asymptotic analysis. The CGS interferograms also reveal the existence of large-scale frictional contact of the crack faces behind the moving shear cracks. In addition high speed thermographic measurements are conducted that show concentrated hot spots behind the crack tip indicating crack face frictional contact. These experiments are modeled by a detailed dynamic finite element calculation involving cohesive elements, adaptive remeshing using subdivision and edge collapse, composite elements, and penalty contact. The numerical calculations are calibrated on the basis of fundamental material properties measured in the laboratory. The computational results are found to be in excellent agreement with the optical experimental measurements (crack speed record and near tip deformation field structure). For shear crack growth, the numerics also confirm the optical observation of large-scale crack face contact.
机译:实验和数值研究了平面内冲击载荷作用下单向石墨/环氧树脂复合材料的动态裂纹扩展。实验是使用CGS(相干梯度感测)干涉仪结合高速摄影进行的,以可视化裂纹扩展事件。在模式Ⅰ的情况下发现裂纹以亚音速传播,而在混合模式和模式Ⅱ下,裂纹尖端速度明显超过层压板的剪切波速度。对于这些声速增长的剪切(Ⅱ型)裂纹,观察到了从裂纹尖端发出的冲击波。这提供了直接的证据,表明裂纹的传播速度快于复合材料的剪切波速度。最初观察到裂纹尖端速度沿纤维跳至接近轴向纵向波速的水平(7500 m / s),然后稳定至大约6500 m / s的较低水平。该速度对应于由渐近分析确定的,剪切裂纹扩展所需的能量释放速率为非零的速度。 CGS干涉图还揭示了运动剪切裂纹后面裂纹面的大规模摩擦接触。另外,进行高速热成像测量,显示裂纹尖端后面的集中热点,指示裂纹面摩擦接触。这些实验是通过详细的动态有限元计算(包括内聚元素,使用细分和边缘塌陷的自适应重新网格化,复合元素以及惩罚接触)进行建模的。数值计算是根据实验室测量的基本材料特性进行校准的。计算结果与光学实验测量(裂纹速度记录和近尖端变形场结构)非常吻合。对于剪切裂纹的增长,该数值还证实了大规模裂纹面接触的光学观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号