首页> 外文会议>Symposium on Modelling the Performance of Engineering Structural Materials III, Oct 7-10, 2002, Columbus, Ohio, USA >THE HIGH CYCLE FATIGUE and FRACTURE BEHAVIOR OF PM AI-Cr-Fe ALLOY CONSOLIDATED BY PLASMA PRESSURE COMPACTION
【24h】

THE HIGH CYCLE FATIGUE and FRACTURE BEHAVIOR OF PM AI-Cr-Fe ALLOY CONSOLIDATED BY PLASMA PRESSURE COMPACTION

机译:等离子体压制固溶PM AI-Cr-Fe合金的高循环疲劳和断裂行为

获取原文
获取原文并翻译 | 示例

摘要

Powders of an Al-7Cr-lFe alloy were prepared by the technique of Gas Atomization Reaction Synthesis (GARS) at Ames Laboratory, Ames, Iowa. A pre-alloyed stock of the aluminum alloy was melted and atomized in an inert environment. The atomized particles were classified as less than 45 micron sized powders. The powder particles were then consolidated in a vacuum environment using the technique of plasma pressure compaction (P~2C~(TM)). The samples were pulsed at 150℃ for 10 minutes and subsequently consolidated at 550℃ under a pressure of 40 MPa for 10 minutes. In this paper, the high cycle fatigue response and final fracture behavior of the aluminum alloy is presented and discussed. The tensile deformation, cyclic stress amplitude-controlled fatigue properties and fracture characteristics of the aluminum alloy are highlighted at two different test temperatures. The influence of test temperature and load ratio on maximum stress versus fatigue life response is detailed. An attempt is made to elucidate the key mechanisms governing stress response and fatigue fracture characteristics in light of the competing and mutually interactive influences of intrinsic microstrucrural features, deformation characteristics of the constituents of the material, maximum stress, load ratio and test temperature.
机译:通过在爱荷华州艾姆斯的艾姆斯实验室的气体雾化反应合成(GARS)技术制备Al-7Cr-1Fe合金粉末。在惰性环境中将铝合金的预合金料熔化并雾化。雾化的颗粒被分类为小于45微米大小的粉末。然后使用等离子压紧技术(P〜2C〜)在真空环境中固结粉末颗粒。将样品在150℃下脉冲10分钟,然后在550℃下在40 MPa的压力下固结10分钟。本文提出并讨论了铝合金的高周疲劳响应和最终断裂行为。在两个不同的测试温度下,铝合金的拉伸变形,循环应力振幅控制的疲劳特性和断裂特性得到了强调。详细介绍了测试温度和负载比对最大应力与疲劳寿命响应的影响。鉴于固有的微观结构特征,材料成分的变形特性,最大应力,负载比和测试温度的相互影响,人们试图阐明控制应力响应和疲劳断裂特性的关键机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号