首页> 外文会议>Symposium on Luminescence and Luminescent Materials, Apr 17-19, 2001, San Francisco, California >Nanocrystal Quantum Dots: Building Blocks for Tunable Optical Amplifiers and Lasers
【24h】

Nanocrystal Quantum Dots: Building Blocks for Tunable Optical Amplifiers and Lasers

机译:纳米晶体量子点:可调光放大器和激光器的构建基块

获取原文
获取原文并翻译 | 示例

摘要

We study optical processes relevant to optical amplification and lasing in CdSe nanocrystal quantum dots (NQD). NQDs are freestanding nanoparticles prepared using solution-based organometallic reactions originally developed for the Cd chalcogenides, CdS, CdSe and CdTe [J. Am. Chem. Soc. 115, 8706 (1993)]. We investigate NQDs with diameters ranging from 2 to 8 nm. Due to strong quantum confinement, they exhibit size-dependent spectral tunability over an energy range as wide as several hundred meV. We observe a strong effect of the matrix/solvent on optical gain properties of CdSe NQDs. In most of the commonly used solvents (such as hexane and toluene), gain is suppressed due to strong photoinduced absorption associated with carriers trapped at solvent-related interface states. In contrast, matrix-free close packed NQD films (NQD solids) exhibit large optical gain with a magnitude that is sufficiently high for the optical gain to successfully compete with multiparticle Auger recombination [Science 287, 10117 (2000)]. These films exhibit narrowband stimulated emission at both cryogenic and room temperature, and the emission color is tunable with dot size [Science 290, 314 (2000)]. Moreover, the NQD films can be incorporated into microcavities of different geometries (micro-spheres, wires, tubes) that produce lasing in whispering gallery modes. The facile preparation, chemical flexibility and wide-range spectral tunability due to strong quantum confinement are the key advantages that should motivate research into NQD applications in optical amplifiers and lasers.
机译:我们研究与CdSe纳米晶体量子点(NQD)中的光学放大和激光发射有关的光学过程。 NQD是使用最初为Cd硫族化物,CdS,CdSe和CdTe开发的基于溶液的有机金属反应制备的独立纳米颗粒[J.上午。化学Soc。 115,8706(1993)]。我们研究了直径范围为2至8 nm的NQD。由于强大的量子限制,它们在数百meV的能量范围内表现出与尺寸相关的光谱可调性。我们观察到基质/溶剂对CdSe NQDs的光学增益特性的强烈影响。在大多数常用溶剂(例如己烷和甲苯)中,由于与与溶剂相关的界面态处捕获的载流子相关的强光诱导吸收,抑制了增益。相反,无基质的紧密堆积NQD膜(NQD固体)显示出较大的光学增益,其大小足以使光学增益成功地与多颗粒俄歇复合竞争(Science 287,10117(2000))。这些薄膜在低温和室温下均表现为窄带激发发射,并且发射颜色可通过点大小进行调整[Science 290,314(2000)]。此外,可以将NQD膜合并到不同几何形状的微腔(微球,金属丝,管子)中,从而在耳语式画廊模式下产生激光。由于强的量子限制,制备简便,化学柔韧性和宽光谱可调谐性是应激发光放大器和激光器中NQD应用研究的关键优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号