首页> 外文会议>Spintronics II >Spin-Transfer in Nanopillars with a Perpendicularly Magnetized Spin Polarizer
【24h】

Spin-Transfer in Nanopillars with a Perpendicularly Magnetized Spin Polarizer

机译:具有垂直磁化的自旋偏振器的纳米柱中的自旋转移

获取原文
获取原文并翻译 | 示例

摘要

Spin-transfer devices that incorporate a polarizer with its magnetization orthogonal to a switchable (free) layer offer the potential for ultra-fast switching, low power consumption and reliable operation. The non-collinear magnetizations lead to large initial spin-transfer torques, eliminating the incubation delay seen in devices with collinear magnetization. Here we present the basic electrical and magnetic characteristics of spin-valve nanopillars that incorporate a perpendicularly magnetized polarizer and demonstrate current-induced switching with short current pulses, down to 100 ps in duration. We have fabricated devices that have a CoNi polarizer with perpendicular magnetization and an in-plane magnetized 3 nm thick Co free layer and a 12 nm thick Co reference layer, each separated by thin (~ 10 nm) Cu layers. The magnetization of the reference layer is collinear with that of free layer to read out the device state. The reference layer also contributes to the spin-accumulation acting on the free layer and leads to a spin-torque that favors the parallel (P) or antiparallel (AP) state depending on the current pulse polarity, reducing the requirement of precise pulse timing in precessional reversal. The anisotropy field of the perpendicular polarizer is 1.3 T, i.e. it is high enough so that in-plane fields (< 0.3 T) applied to switch the magnetizations of the reference and free layers do not reorient the polarizer. Our typical nanopillar device lateral dimensions are between 60 nm and 300 nm and nanopillars are positioned on coplanar waveguides to allow for broadband electrical connections and studies with fast rise time pulses, generated by an arbitrary waveform generator. The switching probability has been determined for variable pulse amplitude and duration, from 0.1 to 10 ns at room temperature.
机译:结合了偏振器且其磁化强度与可切换(自由)层正交的偏振片的自旋转移器件具有超快切换,低功耗和可靠运行的潜力。非共线磁化会导致较大的初始自旋传递扭矩,从而消除了在具有共线磁化的设备中出现的孵育延迟。在这里,我们介绍了具有垂直磁化偏振器的自旋阀纳米柱的基本电学和磁学特性,并演示了持续时间低至100 ps的短电流脉冲引起的电流感应开关。我们制造的设备具有垂直磁化的CoNi偏振器,平面内磁化的3 nm厚的Co自由层和12 nm厚的Co参比层,每个参考层之间均被薄(约10 nm)的Cu层隔开。参考层的磁化强度与自由层的磁化强度共线,以读出器件状态。参考层还有助于作用在自由层上的自旋累积,并导致自旋扭矩,根据当前脉冲的极性,该扭矩有利于平行(P)或反平行(AP)状态,从而降低了精确脉冲时序的要求。进动逆转。垂直偏振器的各向异性场为1.3 T,即足够高,以至于用于切换参考层和自由层的磁化强度的面内场(<0.3 T)不会使偏振器重新定向。我们典型的纳米柱装置的横向尺寸在60 nm至300 nm之间,并且纳米柱位于共面波导上,以实现宽带电连接并研究由任意波形发生器产生的快速上升时间脉冲。已经确定了在室温下从0.1到10 ns的可变脉冲幅度和持续时间的切换概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号