首页> 外文会议>Conference on spintronics II >Spin-Transfer in Nanopillars with a Perpendicularly Magnetized Spin Polarizer
【24h】

Spin-Transfer in Nanopillars with a Perpendicularly Magnetized Spin Polarizer

机译:用垂直磁化的自旋偏振器旋转纳米粒子

获取原文

摘要

Spin-transfer devices that incorporate a polarizer with its magnetization orthogonal to a switchable (free) layer offer the potential for ultra-fast switching, low power consumption and reliable operation. The non-collinear magnetizations lead to large initial spin-transfer torques, eliminating the incubation delay seen in devices with collinear magnetization. Here we present the basic electrical and magnetic characteristics of spin-valve nanopillars that incorporate a perpendicularly magnetized polarizer and demonstrate current-induced switching with short current pulses, down to 100 ps in duration. We have fabricated devices that have a CoNi polarizer with perpendicular magnetization and an in-plane magnetized 3 nm thick Co free layer and a 12 nm thick Co reference layer, each separated by thin (~ 10 nm) Cu layers. The magnetization of the reference layer is collinear with that of free layer to read out the device state. The reference layer also contributes to the spin-accumulation acting on the free layer and leads to a spin-torque that favors the parallel (P) or antiparallel (AP) state depending on the current pulse polarity, reducing the requirement of precise pulse timing in precessional reversal. The anisotropy field of the perpendicular polarizer is 1.3 T, i.e. it is high enough so that in-plane fields (< 0.3 T) applied to switch the magnetizations of the reference and free layers do not reorient the polarizer. Our typical nanopillar device lateral dimensions are between 60 nm and 300 nm and nanopillars are positioned on coplanar waveguides to allow for broadband electrical connections and studies with fast rise time pulses, generated by an arbitrary waveform generator. The switching probability has been determined for variable pulse amplitude and duration, from 0.1 to 10 ns at room temperature.
机译:将偏振器与其磁化为可切换(自由)层的旋转转印装置,提供超快速切换,低功耗和可靠操作的可能性。非共线磁化导致大的初始旋转转印扭矩,消除了具有共线磁化的器件中看到的孵育延迟。在这里,我们介绍了旋转阀纳米粒子的基本电气和磁特性,其包括垂直磁化的偏振器,并展示具有短电流脉冲的电流诱导的切换,持续时间降至100ps。我们具有制造的装置,该装置具有垂直磁化的锥形偏振器和平面内磁化的3nm厚的Co自由层和12nm厚的Co参考层,每个由薄(〜10nm)Cu层分离。参考层的磁化是具有自由层的线性,以读出装置状态。参考层还有助于作用在自由层上的旋转累积,并导致旋转扭矩,该旋转扭矩根据电流脉冲极性而有利于平行(P)或反平行(AP)状态,从而降低了精确脉冲定时的要求预逆转。垂直偏振器的各向异性场是1.3 t,即它足够高,使得施加的面内场(<0.3t)切换参考和自由层的磁化不重新定位偏振器。我们典型的纳米玻璃装置横向尺寸在60nm和300nm之间,并且纳米粒子位于共面波导上,以允许通过任意波形发生器产生的快速上升时间脉冲的宽带电连接和研究。已经确定了在室温下为可变脉冲幅度和持续时间的切换概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号