首页> 外文会议>Society of Photo-Optical Instrumentation Engineers (SPIE);SPIE Proceedings >Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources
【24h】

Radiation-Hydrodynamics, Spectral, and Atomic Physics Modeling of Laser-Produced Plasma EUV Lithography Light Sources

机译:激光产生的等离子EUV光刻光源的辐射流体动力学,光谱和原子物理建模

获取原文

摘要

Tin, lithium, and xenon laser-produced plasmas are attractive candidates as light sources for extreme ultravioletlithography (EUVL). Simulation of the dynamics and spectral properties of plasmas created in EUVL experiments playsa crucial role in analyzing and interpreting experimental measurements, and in optimizing the 13.5 nm radiation from theplasma source. Developing a good understanding of the physical processes in EUVL plasmas is challenging, as itrequires accurate modeling for the atomic physics of complex atomic systems, frequency-dependent radiation transport,hydrodynamics, and the ability to simulate emergent spectra and images that can be directly compared with experimentalmeasurements. We have developed a suite of plasma and atomic physics codes to simulate in detail the radiativeproperties of hot plasmas. HELIOS-CR is a 1-D radiation-magnetohydrodynamics code used to simulate the dynamicevolution of laser-produced and z-pinch plasmas. Multi-frequency radiation transport can be computed using either fluxlimiteddiffusion or multi-angle models. HELIOS-CR also includes the capability to perform in-line non-LTE atomickinetics calculations at each time step in the simulation. Energy source modeling includes laser energy deposition,radiation from external sources, and current discharges. The results of HELIOS-CR simulations can be post-processedusing SPECT3D to generate images and spectra that include instrumental effects, and therefore can be directly comparedwith experimental measurements. Results from simulations of Sn laser-produced plasmas are presented, along withcomparisons with experimental data. We discuss the sensitivity of the 13.5 nm conversion efficiency to laser intensity,wavelength, and pulse width, and show how the thickness of the Sn radiation layer affects the characteristics of the 13.5nm emission.
机译:锡,锂和氙气激光产生的等离子体作为极紫外光刻(EUVL)的光源非常有吸引力。在EUVL实验中创建的等离子体动力学和光谱特性的模拟在分析和解释实验测量值以及优化来自等离子体源的13.5 nm辐射方面起着至关重要的作用。深入了解EUVL等离子体的物理过程具有挑战性,因为它需要对复杂原子系统的原子物理进行精确建模,依赖于频率的辐射传输,流体动力学以及模拟可以与之直接比较的新兴光谱和图像的能力。实验测量。我们已经开发了一套等离子体和原子物理学代码来详细模拟热等离子体的辐射特性。 HELIOS-CR是一维辐射-磁流体动力学代码,用于模拟激光产生的Z捏合等离子体的动态演化。可以使用磁通有限扩散或多角度模型来计算多频辐射传输。 HELIOS-CR还具有在仿真的每个时间步执行在线非LTE原子动力学计算的功能。能源建模包括激光能量沉积,外部资源的辐射以及电流放电。可以使用SPECT3D对HELIOS-CR仿真的结果进行后处理,以生成包括仪器效果的图像和光谱,因此可以直接与实验测量结果进行比较。介绍了Sn激光产生的等离子体的模拟结果,并与实验数据进行了比较。我们讨论了13.5 nm转换效率对激光强度,波长和脉冲宽度的敏感性,并显示了Sn辐射层的厚度如何影响13.5nm发射的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号