首页> 外文会议>Smart nano-micro materials and devices >Integration of microplasma and microfluidic technologies for localised microchannel surface modification
【24h】

Integration of microplasma and microfluidic technologies for localised microchannel surface modification

机译:微等离子体和微流技术的集成,用于局部微通道表面修饰

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper we describe the spatial surface chemical modification of bonded microchannels through the integration of microplasmas into a microfluidic chip (MMC). The composite MMC comprises an array of precisely aligned electrodes surrounding the gas/fluid microchannel. Pairs of electrodes are used to locally ignite microplasmas inside the microchannel. Microplasmas, comprising geometrically confined microscopic electrically-driven gas discharges, are used to spatially functionalise the walls of the microchannels with proteins and enzymes down to scale lengths of 300 μm inside 50 μm-wide microchannels. Microchannels in poly(dimethylsiloxane) (PDMS) or glass were used in this study. Protein specifically adsorbed on to the regions inside the PDMS microchannel that were directly exposed to the microplasma. Glass microchannels required pre-functionalisation to enable the spatial patterning of protein. Firstly, the microchannel wall was functionalised with a protein adhesion layer, 3-aminopropyl-triethoxysilane (APTES), and secondly, a protein blocking agent (bovine serum albumin, BSA) was adsorbed onto APTES. The functionalised microchannel wall was then treated with an array of spatially localised microplasmas that reduced the blocking capability of the BSA in the region that had been exposed to the plasma. This enabled the functionalisation of the microchannel with an array of spatially separated protein. As an alternative we demonstrated the feasibility of depositing functional thin films inside the MMC by spatially plasma depositing acrylic acid and 1,7-octadiene within the microchannel. This new MMC technology enables the surface chemistry of microchannels to be engineered with precision, which is expected to broaden the scope of lab-on-a-chip type applications.
机译:在本文中,我们描述了通过将微等离子体整合到微流控芯片(MMC)中来实现键合微通道的空间表面化学修饰。复合MMC包含围绕气体/流体微通道的精确对齐的电极阵列。电极对用于局部点燃微通道内的微浆。包括几何形状受限的微观电动气体排放的微等离子体被用来在50μm宽的微通道内将蛋白质和酶的功能空间缩小到300μm的蛋白质和酶在空间上功能化。在这项研究中使用了聚二甲基硅氧烷(PDMS)或玻璃中的微通道。蛋白质特异性吸附在PDMS微通道内部直接暴露于微浆的区域。玻璃微通道需要进行预功能化才能实现蛋白质的空间图案化。首先,微通道壁通过蛋白质粘附层,3-氨基丙基-三乙氧基硅烷(APTES)进行功能化,其次,蛋白质封闭剂(牛血清白蛋白,BSA)被吸附到APTES上。然后用一系列空间定位的微等离子体处理功能化的微通道壁,这些微等离子体降低了已经暴露于血浆的区域中BSA的阻断能力。这使得微通道能够与一系列空间分离的蛋白质实现功能化。作为替代方案,我们证明了通过在微通道内空间等离子体沉积丙烯酸和1,7-辛二烯来在MMC内沉积功能性薄膜的可行性。这项新的MMC技术使微通道的表面化学处理得以精确设计,有望扩大芯片实验室类型应用的范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号