首页> 外文会议>Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VIII >Buried interface and luminescent coupling analysis with time-resolved two-photon excitation microscopy in Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductor heterostructures
【24h】

Buried interface and luminescent coupling analysis with time-resolved two-photon excitation microscopy in Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductor heterostructures

机译:Ⅱ-Ⅵ和Ⅲ-Ⅴ族半导体异质结构的掩埋界面和时间分辨双光子激发显微镜的发光耦合分析

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor heterostructures are used in high-efficiency solar cells and in other electronic devices. Solar cells can’treach thermodynamic efficiency limits in part due to the charge carrier recombination, and efforts are applied to understandand reduce recombination. We describe a novel experimental approach to identify and quantify recombination losses atsemiconductor interfaces. Using time-resolved two-photon excitation microscopy, we generate carriers at well-definedabsorber depths and find that the red spectral shift of the photoluminescence (PL) emission can be used as a “spectroscopicruler” to identify recombination depth up to 30 μm. We apply this analysis to quantify Shockley-Read-Hall recombinationat the buried CdTe/CdTe interface, where 15 μm thick epitaxial CdTe is grown by the molecular beam epitaxy on thesingle crystal CdTe substrate. We also measure luminescent coupling between the GaInP and GaAs layers inheterostructures grown by the metal-organic chemical vapor deposition. Our results resolve important limitations foraccurate 3D charge carrier lifetime tomography. Earlier we analyzed recombination due to extended defects and grainboundaries with the lateral resolution sufficient to resolve such features (approximately 0.5 μm), but interpretation of thecarrier lifetime microscopy data for buried interfaces and buried semiconductor layers was a challenge. Using methodsdescribed here, the axial (z) coordinate for the PL microscopy measurements becomes as well defined as the lateral (x, y)coordinates, enabling accurate 3D identification and analysis of the charge carrier recombination locations insemiconductor heterostructures.
机译:半导体异质结构用于高效太阳能电池和其他电子设备中。太阳能电池无法达到热力学效率极限,部分原因是由于载流子复合,因此人们努力理解并减少了复合。我们描述了一种新颖的实验方法来识别和量化\ r \半导体界面处的重组损失。使用时间分辨双光子激发显微镜,我们在明确定义的\ r \ nabsorber深度生成了载流子,发现光致发光(PL)发射的红色光谱偏移可以用作“光谱\ r \ nruler”来识别重组深度可达30μm。我们应用此分析来量化Shockley-Read-Hall重组\ n \ n掩埋的CdTe / CdTe界面,其中通过分子束外延在单晶CdTe衬底上生长15μm厚的外延CdTe。我们还测量了金属有机化学气相沉积法生长的异质结构中GaInP和GaAs层之间的发光耦合。我们的结果解决了3D电荷载流子寿命精确层析的重要局限性。早先我们分析了由于扩展缺陷和晶粒边界引起的复合,横向分辨率足以解决此类特征(约0.5μm),但是如何解释掩埋界面和掩埋半导体层的载流子寿命显微镜数据是一个挑战。使用此处描述的方法,PL显微镜测量的轴向(z)坐标与横向(x,y)坐标一样好,从而可以精确地3D识别和分析载流子复合位置r \半导体异质结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号