首页> 外文会议>Silicon photonics XII >Energy-efficient millimeter-wave generation using silicon photonics
【24h】

Energy-efficient millimeter-wave generation using silicon photonics

机译:使用硅光子技术产生高能效的毫米波

获取原文
获取原文并翻译 | 示例

摘要

Due to the exponential growth of the bandwidth requirement for wireless communication systems, new frequency bands need to be utilized. For future 5G wireless networks, frequencies of 30 GHz to 90 GHz are considered, while for satellite and aircraft communications the sub-terahertz frequencies are considered. However, with increasing millimeter-wave frequencies (30 GHz - 300 GHz), high-speed electronic solutions become energy-inefficient, and alternative solutions are required. Photonics offers the bandwidth and a potentially seamless integration with the fiber-wireless technology (Fi-Wi) for 5G communications. Commercially available terahertz generators are often based on photonics, i.e., lasers, too. One particularly promising technique to generate the microwave or sub-terahertz signal is to use the comb generated by modulating a continuous-wave laser signal. By filtering two non-adjacent comb lines, a beat signal is generated that has a frequency that is an integer multiple of the electrical modulator driving signal. In this way, frequency multiplication is achieved using microwave photonics. Photodetectors and/or photomixers can then be used to convert the beat signal to a millimeter-wave. However, the energy-efficiency of these techniques - and how they compare to all-electronic solutions - has not been analyzed yet. In this paper we will present this energy-efficiency analysis, based on a silicon photonics implementation. Silicon photonics has the potential to miniaturize such systems, for ubiquitous and low-cost implementation. Silicon-based modulators, however, are not ideal phase modulators, and simulation tools need to incorporate this. The regimes, in terms of signal power and frequency, where photonics compares favorably over electronics, will be discussed.
机译:由于无线通信系统的带宽需求呈指数增长,因此需要利用新的频带。对于未来的5G无线网络,考虑了30 GHz至90 GHz的频率,而对于卫星和飞机通信,则考虑了亚太赫兹频率。但是,随着毫米波频率(30 GHz-300 GHz)的增加,高速电子解决方案变得无能为力,因此需要替代解决方案。 Photonics提供带宽并可能与用于5G通信的光纤无线技术(Fi-Wi)无缝集成。市售的太赫兹发生器通常也基于光子学,即激光器。产生微波或亚太赫兹信号的一种特别有前途的技术是使用通过调制连续波激光信号而产生的梳子。通过对两个不相邻的梳齿线进行滤波,产生了拍频信号,该拍频信号的频率是电调制器驱动信号的整数倍。以这种方式,使用微波光子学实现了倍频。然后可以使用光电检测器和/或光电混合器将差拍信号转换为毫米波。但是,尚未分析这些技术的能源效率以及它们与全电子解决方案的比较方式。在本文中,我们将基于硅光子学的实现方法进行能量效率分析。硅光子学具有将此类系统小型化的潜力,以实现普遍存在且低成本的实施。但是,基于硅的调制器并不是理想的相位调制器,因此仿真工具需要将其纳入其中。将讨论在信号功率和频率方面,光子学优于电子学的各种体制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号