首页> 外文会议>Silicon photonics XII >Silicon photonic device applications using micro-opto-electro-mechanical index perturbation
【24h】

Silicon photonic device applications using micro-opto-electro-mechanical index perturbation

机译:使用微光机电指数微扰的硅光子器件应用

获取原文
获取原文并翻译 | 示例

摘要

Silicon photonics enables the development of optical components on a chip with the potential for large-scale optical integrated circuits that can be fabricated at the wafer-scale using foundries similar to those used in the electronics industry. Although silicon is a passive optical material with an indirect bandgap, reconfigurable devices have been demonstrated using thermo-optic effects (large phase shifts, but relatively slow with large power consumption) and carrier plasma dispersion effects (high-speed, but small phase shifts). We recently demonstrated a low-power approach for inducing large phase shifts (>2n) using a technique that we call micro-opto-electro-mechanical index perturbation (MOEM-IP). In this initial work we characterized silicon nitride waveguides in which the propagating optical mode's evanescent field is vertically coupled to silicon nitride microbridges. This interaction leads to an effective index tuning that is a strong function of the waveguide-microbridge separation. We now extend our MOEM-IP approach to different configurations (i.e. in-plane coupling) and material systems (i.e. silicon-on-insulator). Mode perturbation simulations indicate that the MOEM-IP approach is widely applicable to many configurations and material systems enabling large effective index tuning (?n_(effective)>0.1) requiring microbridge displacements of only a few hundred nanometers. We also examine several device applications that take advantage of MOEM-IP. These include tunable optical filters using high-Q microring cavities and optical phased arrays that enable chip-scale beam steering in two-dimensions using low-power phase shifting enabled by MOEM-IP.
机译:硅光子学使芯片上光学元件的开发成为可能,可以使用类似于电子行业中使用的代工厂以晶圆级规模制造大规模光学集成电路。尽管硅是一种具有间接带隙的无源光学材料,但可重构器件已通过热光效应(大的相移,但耗电量大而相对较慢)和载流子等离子体色散效应(高速,但相移小)得到了证明。 。我们最近展示了一种使用微光机电指数微扰(MOEM-IP)的技术来诱导大相移(> 2n)的低功耗方法。在这项初步工作中,我们对氮化硅波导进行了表征,其中,传播光学模式的渐逝场垂直耦合到氮化硅微桥。这种相互作用导致有效的折射率调整,这是波导-微桥分离的重要功能。现在,我们将MOEM-IP方法扩展到不同的配置(即面内耦合)和材料系统(即绝缘体上硅)。模式扰动仿真表明,MOEM-IP方法广泛适用于许多配置和材料系统,可实现仅需几百纳米的微桥位移的大有效折射率调整(Δn_(有效)> 0.1)。我们还将研究利用MOEM-IP的几种设备应用程序。这些产品包括使用高Q微环腔的可调谐滤光器和光学相控阵,这些相控阵可使用MOEM-IP支持的低功率相移实现二维的芯片级光束控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号