【24h】

A unified approach for high order sensitivity analysis

机译:高阶灵敏度分析的统一方法

获取原文
获取原文并翻译 | 示例

摘要

Many engineering problems require solving PDEs by means of numerical methods (type FEM/BEM) which sensitivity analysis entails taking derivatives of functions denned through integration. In sizing optimization problems, the integration domains are fixed, what enables the regular use of analytical sensitivity techniques. In shape optimization problems, the integration domains are nevertheless variable. This fact causes some cumbersome difficulties, that have traditionally been overcome by means of finite difference approximations. Three kinds of analytical approaches have been proposed for computing sensitivity derivatives in shape optimization problems. The first is based on differentiation of the final discretized equations. The second is based on variation of the continuum equations and on the concept of material derivative. The third is based upon the existence of a mapping that links the material space with a fixed space of reference coordinates. This is not restrictive, since such a transformation is inherent to FEM and BEM implementations. In this paper, we present a generalization of the latter approach on the basis of a unified procedure for integration in manifolds. Our aim is to obtain a single, unified, compact procedure to compute arbitrarily high order directional derivatives of the objective function and the constraints in FEM/BEM shape optimization problems. Special care has been taken on heading for easy-to-compute recurrent expressions. The proposed scheme is basically independent from the specific form of the state equations, and can be applied to both, direct and adjoint state formulations. Thus, its numerical implementation in current engineering codes is straightforward. An application example is finally presented.
机译:许多工程问题需要通过数值方法(类型为FEM / BEM)求解PDE,敏感性分析要求采用通过积分确定的函数导数。在确定优化问题的大小时,积分域是固定的,这使得可以定期使用分析灵敏度技术。在形状优化问题中,积分域仍然可变。这个事实造成了一些麻烦的困难,这些困难通常是通过有限差分近似来克服的。已经提出了三种分析方法来计算形状优化问题中的灵敏度导数。首先是基于最终离散方程的微分。第二种是基于连续方程的变化和物质导数的概念。第三是基于将材质空间与固定的参考坐标空间链接的映射的存在。这不是限制性的,因为这种转换是FEM和BEM实现所固有的。在本文中,我们基于在歧管中集成的统一程序,介绍了后一种方法的一般化。我们的目标是获得一个单一,统一,紧凑的过程,以计算目标函数和FEM / BEM形状优化问题中的约束的任意高阶方向导数。在标题上要特别注意易于计算的递归表达式。所提出的方案基本上独立于状态方程的特定形式,并且可以应用于直接状态和伴随状态公式。因此,其在当前工程规范中的数字实现非常简单。最后给出一个应用示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号