【24h】

Observations of Barrier layer in southeastern Arabian Sea using Argo observations

机译:利用Argo观测资料对阿拉伯东南海的屏障层进行观测

获取原文
获取原文并翻译 | 示例

摘要

We present in this work composite relationships among Barrier Layer (BL) depth, and various other parameters either directly responsible for its formation or the sequence of events which follow once it is formed. Underlying mechanisms responsible for the development of the BL depth, its sustenance and annihilation are examined in the southeastern Arabian Sea (SEAS) in the north Indian Ocean using primarily ARGO floats observations along with ancillary data from various satellites and surface currents from ocean model. All the available Argo floats observations of temperature and salinity as of December 2005 have been analyzed to evaluate the seasonal characteristics of barrier layer (BL) in this warm pool region of Arabian Sea. The annual average BL thickness in this region varies from 20 to 70 m, with larger values towards coast. The standard deviation is also high (15-30 m) in this region showing a strong seasonal variation. In a complete seasonal characteristic studied with the use of observations, BL thickness shows a primary peak (~ 50 m) in January and a secondary peak in September (~ 35 m). While the former is remotely forced, the later owes its generation to the local forcing via precipitation. TMI observations show a lag of 3 months in the SST warming with respect to the maximum BL thickness observed during January. Peak warming in SST during April immediately follows by rise in integrated water vapour. Interestingly, following the secondary maxima of BL, SST does not show any warming signature, possibly due to the overcast condition, preventing the surface from heating up.
机译:我们在这项工作中介绍了屏障层(BL)深度与直接影响其形成或一旦形成的事件序列直接相关的各种其他参数之间的复合关系。在印度洋北部阿拉伯东南海(SEAS)中,主要使用ARGO浮标观测以及来自各种卫星的辅助数据和海洋模型的地表水流,研究了导致BL深度,其维持和an灭的潜在机制。截至2005年12月,已对所有可用的Argo浮标观测到的温度和盐度进行了分析,以评估阿拉伯海这个温暖池区的屏障层(BL)的季节特征。该区域的年平均BL厚度在20到70 m之间,向海岸的值更大。该区域的标准偏差也很高(15-30 m),显示出强烈的季节性变化。在利用观测资料研究的完整季节特征中,BL厚度在1月出现一个主峰(〜50 m),在9月出现一个次峰(〜35 m)。前者虽然受到远程强迫,但后者的产生归因于通过降水造成的局部强迫。 TMI观测结果表明,相对于在一月份期间观测到的最大BL厚度,SST变暖滞后了3个月。随着综合水蒸气的上升,4月SST的峰值变暖立即发生。有趣的是,遵循BL的次要最大值,SST可能没有出现任何变暖的迹象,这可能是由于阴天造成的,从而防止了表面升温。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号