首页> 外文会议>Recent advances in systems science amp; mathematical modelling >TVD and ENO Applications to Supersonic Flows in 2D - Part I
【24h】

TVD and ENO Applications to Supersonic Flows in 2D - Part I

机译:TVD和ENO在二维超声速流中的应用-第一部分

获取原文
获取原文并翻译 | 示例

摘要

In this work, first part of this study, the high resolution numerical schemes of Lax and Wendroff, of Yee, Warming and Harten, of Yee, and of Harten and Osher are applied to the solution of the Euler and Navier-Stokes equations in two-dimensions. With the exception of the Lax and Wendroff and of the Yee schemes, which are symmetrical ones, all others are flux difference splitting algorithms. All schemes are second order accurate in space and first order accurate in time. The Euler and Navier-Stokes equations, written in a conservative and integral form, are solved, according to a finite volume and structured formulations. A spatially variable time step procedure is employed aiming to accelerate the convergence of the numerical schemes to the steady state condition. It has proved excellent gains in terms of convergence acceleration as reported by Maciel. The physical problems of the supersonic shock reflection at the wall and the supersonic flow along a compression corner are solved, in the inviscid case. For the viscous case, the supersonic flow along a compression corner is solved. In the inviscid case, an implicit formulation is employed to marching in time, whereas in the viscous case, a time splitting approach is used. The results have demonstrated that the Yee, Warming and Harten algorithm has presented the best solution in the inviscid shock reflection problem; the Harten and Osher algorithm, in its ENO version, and the Lax and Wendroff TVD algorithm, in its Van Leer variant, have yielded the best solutions in the inviscid compression corner problem; and the Lax and Wendroff TVD algorithm, in its Minmodl variant, has presented the best solution in the viscous compression corner problem.
机译:在这项工作中,本研究的第一部分将Lax和Wendroff,Yee,Warming和Harten,Yee以及Harten和Osher的高分辨率数值方案应用到两个Euler和Navier-Stokes方程的解中尺寸。除了Lax和Wendroff以及Yee方案是对称方案以外,所有其他方案都是通量差分裂算法。所有方案在空间上都是二阶的,在时间上是一阶的。根据有限的体积和结构化公式,以保守和整数形式编写的Euler和Navier-Stokes方程得以求解。采用空间可变的时间步长过程,旨在加速数值方案收敛到稳态条件。正如Maciel报道的那样,在收敛加速方面已经证明了出色的收益。在无粘性的情况下,解决了壁上超音速冲击反射和沿压缩角的超音速流动的物理问题。对于粘性情况,解决了沿压缩角的超音速流动。在无粘性的情况下,采用隐式公式进行时间前进,而在粘性的情况下,则采用时间分割方法。结果表明,Yee,Warming和Harten算法是解决无形冲击反射问题的最佳解决方案。 ENO版本的Harten和Osher算法以及Van Leer变体的Lax和Wendroff TVD算法,在无形压缩角问题中提供了最佳解决方案; Lax和Wendroff TVD算法(其Minmodl变体)为粘性压缩角问题提供了最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号