首页> 外文会议>Ram accelerators >Prediction of surface heating of a projectile flying in RAMAC 30 of ISL
【24h】

Prediction of surface heating of a projectile flying in RAMAC 30 of ISL

机译:ISL的RAMAC 30中飞弹飞行的表面加热的预测

获取原文
获取原文并翻译 | 示例

摘要

In a ram accelerator a sharp-nosed-body flies at supersonic velocity through a tube initially filled with a highly compressed combustible gas mixture. By shock compression, i.e., by the bow wave and its reflections at the tube wall, the gas mixture is heated progressively so that it becomes ignited in subdetonative combustion mode at the body's back and in superdetonative mode, investigated mainly in the RAMAC 30 of ISL, in the slit between the projectile midbody surface and the tube wall. The gas combustion causes a temperature rise follwed by a gas pressure increase giving a forward thrust to the body of the ram-projectile. Due to the transfer of heat from gas to projectile, the latter's surface temperature increases, on the one hand in the nose region and on the other hand at the body contour of the mid-part "body" region including fins and at the afterbody "expansion zone". Then ablation of surface material begins which is naturally undesirable not only at the sharp nose but also at the fins and the body of the ram projectile, especially when combustion is localized at the body of the projectile in superdetonative mode. The control of the heating at the nose and the body is necessary for successful ram accelerator operation. Therefore a prediction of the heat flux from gas to projectile surface becomes needful. For this reason a boundary layer and ablation model has been developed by which the heating of the projectile and its melting ablation at nose, fins and body can be estiamted for an optimal choice of projectile material at a desired velocity and gas pressure range.
机译:在柱塞加速器中,尖锐的物体以超音速的速度通过最初充满高度压缩的可燃气体混合物的管子飞行。通过冲击压缩,即通过弓形波及其在管壁处的反射,气体混合物被逐渐加热,从而在人体后部以亚爆燃模式和超爆模式被点燃,主要在ISL的RAMAC 30中进行了研究。 ,位于弹丸中体表面和管壁之间的缝隙中。气体燃烧导致温度上升,而气体压力上升则导致温度上升,从而对撞锤弹体施加了向前的推力。由于热量从气体传递到弹丸,弹丸的表面温度升高,一方面在鼻子区域,另一方面在中部“身体”区域的身体轮廓(包括鳍片)和在后身“扩展区”。然后开始烧蚀表面材料,这自然是不希望的,不仅在尖锐的鼻子处而且在冲压炮弹的翼片和翅片体处都是不希望的,特别是当燃烧以超爆轰方式位于炮弹体处时。要成功控制推杆加速器,必须控制鼻子和身体的加热。因此,需要预测从气体到弹丸表面的热通量。因此,已经开发了边界层和烧蚀模型,通过该模型可以估算弹丸的加热及其在鼻子,鳍和主体处的融化烧蚀,以在所需的速度和气压范围内优化弹丸材料的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号