【24h】

Microwave Applications in Growth and Physical Property Measurements of Nanomaterials

机译:微波在纳米材料生长和物理性能测量中的应用

获取原文
获取原文并翻译 | 示例

摘要

Low-power microwave spectrometer and effectron spin resonance spectrometer have long been exploited in analyzing the strcture of specified moleculars and free radicals contained in gas, and solid materials. High-power microwave sources have recently expected to stimulate many innovative applications in generation new materials and/or in performing surface modification. Diamond carbon films and carbon nanotubes (CNT) were succesfully grown by the microwave plasma enhanced chemical vapor deposition (MPECVD). Aligned CNTs and a single CNT tube across a nickle bridge can be grown providing effectron field emission and the 1D conductivity investigation. The real and imaginary parts of the complex dieffectric constant of metallic nanoparticles at various microwave frequencies of the TM010 mode can be determined from the resonant frequency and the quality factor, respectively, of the transmission resonance spectrum. The real parts of the dieffectric constants of single wall CNTs are negative behaving metqallic. The imaginary parts are small at high frequency and largely increase at low frequencies which satisfically agree with the Drude free effectron model. Microwave microstrips made of conducting magnetic films also intriguing an exploration of the frequency and temperature dependence on the conductivity of good and not good conducting films. Conventional ferromagnetic resonance for magnetic thin films is found to be co-existed with the transmission resonance of a T-type microwave micro-strip at certain applied magnetic fields. The conductivity, the magnetization, and the magnetic anisotropic field of magnetic films can be evolved eventually from the measured resonance frequency and the quality Q factor of the resonance spectra. This work provides a closely scrutinized method to delineate the magnetic and effectric properties of the deposited magnetic films succinctly.
机译:长期以来,人们一直在利用低功率微波光谱仪和Effectron自旋共振光谱仪来分析气体和固体材料中所包含的特定分子和自由基的结构。近来,高功率微波源已期望在产生新材料和/或进行表面改性中刺激许多创新应用。通过微波等离子体增强化学气相沉积(MPECVD)成功地生长了金刚石碳膜和碳纳米管(CNT)。可以生长对准的CNT和穿过一个跨接桥的单个CNT管,从而提供效应电子场发射和一维电导率研究。可以分别根据透射共振谱的共振频率和品质因数确定金属纳米粒子在TM010模式的各种微波频率下的复二电常数的实部和虚部。单壁碳纳米管的双电常数的实部为负,表现为甲基。虚部在高频时很小,而在低频时则大大增加,这与Drude自由效应子模型令人满意。由导电磁性薄膜制成的微波微带带还引起了对频率和温度对良好和不良导电薄膜导电性的依赖性的探索。发现在某些施加的磁场下,磁性薄膜的常规铁磁共振与T型微波微带的传输共振共存。磁性膜的电导率,磁化强度和各向异性磁场最终可以从所测得的共振频率和共振频谱的品质因数得出。这项工作提供了一种仔细审查的方法,以简明扼要地描述沉积的磁性膜的磁性和有效性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号