【24h】

Experimental Verification of a Numerical Model of a Vertical Machining Centre

机译:立式加工中心数值模型的实验验证

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The Machine Technology Department has developed an optimization method ofrnmachine tool bodies relying on the combined techniques of the finite elementrnmethod and genetic algorithms. The method was applied in the optimization processrnof selected bodies of a newly designed milling machine centre. We can say that arnnew concept of designing of machine tool frames has been proposed because up tillrnnow, frames are designed using an analogy or an experimental method, simplifiedrnanalytical models (for example, a column is modeled as a beam) or making use ofrnexperienced designers only. Because of complexity of typical machine tool framesrnanalytical models are used very rarely. The use of numerical models of frames needsrnnot only experience in the design process but in CAE systems (FEM, CAD) as well.rnIn the literature there is little information about results of the optimization of framesrnof machine tools and there is no information about the results of experimentalrnverification of optimized frames for machine tools. For that reason an experimentalrnprototype of a new milling machine centre was made of metal and then verified inrnthe course of the scientific investigation. The paper presents a numerical model ofrntwo key bodies of a milling machine centre together with simulation andrnexperimental investigation results. In the case of stiffness indicator values, for whichrnthe displacement is measured during the experimental investigation amounted up tornseveral or more μm, the conformity of results was satisfactory, i.e. the results variedrnno more than 10-15%. Yet, for cases where stiffness indicators amounted up tornseveral thousand N/ μm the discrepancies were 100% and more. The direct reasonrnfor such significant differences was the high uncertainty of measurements related tornextremely minute displacements. The measuring process in a workshop environmentrnat the level of 1 - 2 μm with uncertainty less than 1 μm is technically difficult tornconduct thus entailing significant measuring errors.
机译:机械技术部根据有限元方法和遗传算法相结合的技术,开发出了一种优化机床本体的方法。该方法被应用于优化设计的新设计的铣床中心的加工过程中。可以说,已经提出了机床框架设计的新概念,因为到目前为止,框架是使用类比或实验方法,简化的分析模型(例如,将圆柱建模为梁)或仅使用经验丰富的设计器进行设计的。 。由于典型机床框架的复杂性,很少使用分析模型。框架数值模型的使用不仅需要设计过程中的经验,而且还需要CAE系统(FEM,CAD)中的经验。在文献中,关于框架优化机床结果的信息很少,也没有关于结果的信息。机床优化框架的实验验证。因此,一个新的铣床中心的实验原型是用金属制成的,然后在科学研究过程中进行了验证。提出了铣削加工中心两个关键机构的数值模型,并进行了仿真和实验研究。对于刚度指标值,在实验研究过程中测得的位移量达到几个或更多μm,结果的一致性令人满意,即结果变化不超过10-15%。然而,对于刚度指标高达数千N /μm的情况,差异为100%或更高。产生如此巨大差异的直接原因是与极微小位移有关的测量结果的高度不确定性。车间环境中的测量过程处于1-2μm的水平,不确定度小于1μm,这在技术上很难进行传导,因此会带来明显的测量误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号