【24h】

Finite Element Analysis of Thermo-Mechanical and Failure Properties of Hybrid Fiber Composites

机译:混杂纤维复合材料热机械性能和失效特性的有限元分析

获取原文
获取原文并翻译 | 示例

摘要

Multiphase composite material also known as hybrids have major engineeringrnapplications where strength to weight ratio, low cost and ease of fabrication arernrequired. A high modulus material might need a replacement owing to its brittlernnature leading to sudden failure. For example considerable reduction in cost withoutrnloss of mechanical properties can be obtained using Kevlar-graphite/epoxy systems.rnAdvances in computational micromechanics allow us to study hybrid multiphasernsystems using finite element simulations. The goal of this research is to evaluate therneffective mechanical properties of hybrid composites containing graphite and glassrnfibers interspersed in an epoxy matrix. Elastic constants such as longitudinal tensilernand shear modulus and major Poisson’s ratios seem to follow the RoHM (Rule ofrnHybrid Mixtures) relation with reasonable accuracy. Transverse modulus andrntransverse shear modulus can be predicted using the Modified Halpin Tsai relationsrnfor multiphase composites. Strength properties, unlike the elastic constants showrnhigh variability with random locations of the fibers for a given volume fraction. It isrnalso observed that the stress corresponding to failure initiation of the hybrids werernlower than that of graphite/ and glass/epoxy composites. This is due to the stressrnconcentration caused by a second fiber inclusion. Effective coefficients of thermalrnexpansion and residual thermal stresses are calculated for hybrid composites andrncompared with binary composites. Progressive damage model that uses damagernmechanics based softening response for the matrix is used to model damagernprogression behavior for the hybrid composites. The damage evolution energy isrnequal to the fracture toughness of the epoxy. The results are compared to that ofrngraphite and glass epoxy bi-material composite systems.
机译:多相复合材料也被称为杂化材料,在主要的工程应用中需要强度/重量比,低成本和易于制造。高模量材料由于其脆性会导致突然失效,可能需要更换。例如,使用凯夫拉尔-石墨/环氧树脂系统可在不降低机械性能的情况下大幅降低成本。计算机微力学的进步使我们能够使用有限元模拟研究混合多相系统。这项研究的目的是评估散布在环氧树脂基体中的含有石墨和玻璃纤维的混合复合材料的有效机械性能。诸如纵向拉伸和剪切模量以及主要泊松比之类的弹性常数似乎以合理的精度遵循RoHM(混合规则)。可以使用修正的Halpin Tsai关系式预测多相复合材料的横向模量和横向剪切模量。在给定的体积分数下,强度特性与弹性常数不同,在纤维的随机位置处表现出较高的可变性。还观察到,与杂化材料的失效引发相对应的应力比石墨/和玻璃/环氧树脂复合材料的应力低。这是由于第二纤维夹杂物引起的应力集中。计算了混合复合材料的有效热膨胀系数和残余热应力,并与二元复合材料进行了比较。对基体使用基于损伤力学的软化响应的渐进损伤模型用于对杂化复合材料的损伤进展行为进行建模。损伤发展能量等于环氧树脂的断裂韧性。将结果与石墨和玻璃环氧双材料复合体系进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号