首页> 外文会议>Post-quantum cryptography >Implementation of McEliece Based on Quasi-dyadic Goppa Codes for Embedded Devices
【24h】

Implementation of McEliece Based on Quasi-dyadic Goppa Codes for Embedded Devices

机译:基于准二元Goppa码的McEliece在嵌入式设备中的实现

获取原文
获取原文并翻译 | 示例

摘要

Most public-key cryptosystems frequently implemented have been proven secure on the basis of the presumed hardness of two mathematical problems: factoring the product of two large primes (FP) and computing discrete logarithms (DLP). At present, both problems are believed to be computationally infeasible with an ordinary computer. However, a quantum-computer having the ability to perform computations on a few thousand qbits could solve both problems using Shor's algorithm [23]. Although a quantum computer of this dimension has not been reported, development and cryptanalysis of alternative public-key cryptosystems seem suitable. To achieve acceptance and attention in practice, they have to be implemented efficiently. Furthermore, the implementations have to perform fast while keeping memory requirements low for security levels comparable to conventional schemes. The McEliece encryption and decryption do not require computationally expensive multiple precision arithmetic. Hence, it is predestined for an implementation on embedded devices. The major disadvantage of the McEliece public-key cryptosystem(PKC) is its very large public key of several hundred thousands bits. For this reason, the McEliece PKC has achieved little attention in the practice. Another disadvantage of the McEliece scheme, like many other schemes, is that it is not semantically secure. The quasi-dyadic McEliece variant proposed by Barreto and Misoczki addresses both problems. In this work we provide an implementation of this alternative public-key cryptosystem, which is semantically secure and uses a 40 times smaller public key and a five times smaller secret key compared to a previously published implementation [6].
机译:根据两个数学问题的假设难度,已证明大多数经常实施的公钥密码系统是安全的:分解两个大质数(FP)的乘积和计算离散对数(DLP)。目前,认为这两个问题在普通计算机上在计算上是不可行的。然而,使用Shor算法[23],能够在几千个qbit上执行计算的量子计算机可以解决这两个问题。尽管没有报道过这种尺寸的量子计算机,但替代公钥密码系统的开发和密码分析似乎是合适的。为了在实践中获得认可和关注,必须有效地实施它们。此外,这些实现必须快速执行,同时保持与传统方案可比的安全级别所需的低内存需求。 McEliece加密和解密不需要计算上昂贵的多精度算术。因此,它注定要在嵌入式设备上实现。 McEliece公钥密码系统(PKC)的主要缺点是其数十万位的超大公钥。因此,McEliece PKC在实践中很少受到关注。与许多其他方案一样,McEliece方案的另一个缺点是它在语义上不安全。 Barreto和Misoczki提出的准二分法McEliece变体解决了这两个问题。在这项工作中,我们提供了这种替代的公共密钥密码系统的实现,该系统在语义上是安全的,并且与以前发布的实现相比,使用的公共密钥小40倍,秘密密钥小5倍[6]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号