首页> 外文会议>Plutonium futures: the science 2014 >Reduction of Plutonium in Acidic Solutions by Porous Carbon Solids
【24h】

Reduction of Plutonium in Acidic Solutions by Porous Carbon Solids

机译:多孔碳固体还原酸性溶液中的of

获取原文
获取原文并翻译 | 示例

摘要

Manipulation and control of the oxidation state of plutonium is applicable to almost all processes involving remediation, separation and chemical purification of plutonium, both in industrial and academic laboratory settings. Electrochemical methods using a potentiostat are generally preferred for preparation of the different Pu oxidation states in chemistry laboratories. Reduction of Pu in any oxidation state at a platinum cathode will yield Pu(Ⅲ), but if the starting oxidation state is Pu(Ⅴ) or Pu(Ⅵ), the reduction is quite slow due to the large overvoltage required for the Pu(Ⅴ)-Pu(Ⅳ) reduction. Reduction by this method is time-consuming and not feasible if there is a large volume of solution to be reduced. Alternative methods generally involve the addition of chemical reducing agents, such as Fe(Ⅱ), or NO_2~-. However, the addition of chemicals can further complicate the solution chemistry, leading to more purification steps. Thus, the idea of Pu(Ⅵ) reduction to a lower oxidation state by simple contact with a solid surface is appealing. Furthermore, the ability to concentrate Pu(Ⅵ) from large solutions onto a solid, and then strip the Pu in a lower oxidation state with a small volume of acid for reprocessing would help the laboratory avoid expensive transuranic waste requisitions, with very little time commitment. Porous carbon materials with high surface areas are electrically conductive and may behave as reducing agents toward Pu and other metals. In our previous work, both as-synthesized and chemically oxidized nanocast mesoporous carbon showed superior Pu sorption capacity compared to activated carbon, and X-ray absorption spectroscopy (XAS) showed that oxidized Pu(Ⅴ/Ⅵ) were reduced to Pu(Ⅳ) at the mesoporous carbon surface in solutions with pH 2-7.
机译:industrial的氧化态的操纵和控制几乎适用于工业和学术实验室环境中涉及involving的修复,分离和化学纯化的所有过程。在化学实验室中,通常优选使用稳压器的电化学方法制备不同的Pu氧化态。在铂阴极上以任何氧化态还原Pu都会生成Pu(Ⅲ),但是如果起始氧化态是Pu(Ⅴ)或Pu(Ⅵ),则由于Pu(所需的过大电压)的还原速度很慢。 Ⅴ)-Pu(Ⅳ)还原。如果要还原的溶液量很大,用这种方法进行还原很费时,也不可行。替代方法通常包括添加化学还原剂,例如Fe(Ⅱ)或NO_2〜-。但是,添加化学药品会使溶液化学进一步复杂化,从而导致更多的纯化步骤。因此,通过简单地与固体表面接触将Pu(Ⅵ)还原成较低的氧化态的想法是吸引人的。此外,能够将大溶液中的Pu(Ⅵ)浓缩到固体上,然后以较低的氧化率用少量酸汽提Pu进行再处理,这将有助于实验室避免昂贵的超铀废料需求,而所需时间很少。具有高表面积的多孔碳材料是导电的,并且可以充当针对Pu和其他金属的还原剂。在我们以前的工作中,无论是合成的还是化学氧化的纳米浇铸介孔碳均比活性炭具有更好的Pu吸附能力,X射线吸收光谱法(XAS)显示氧化的Pu(Ⅴ/Ⅵ)被还原为Pu(Ⅳ)在pH 2-7的溶液中介孔碳表面。

著录项

  • 来源
  • 会议地点 Las Vegas NV(US)
  • 作者单位

    Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA, Building 70 A, MS 1150;

    Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (P.R. China);

    Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA, Building 70 A, MS 1150;

    Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA, Building 70 A, MS 1150;

    Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (P.R. China);

    Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA, Building 70 A, MS 1150;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号