首页> 外文会议>Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE >Quantum dot solar cells: Effective conversion of IR radiation due to inter-dot n-doping
【24h】

Quantum dot solar cells: Effective conversion of IR radiation due to inter-dot n-doping

机译:量子点太阳能电池:由于点间n掺杂而导致的IR辐射的有效转换

获取原文

摘要

We report a 50% increase in power efficiency for our novel InAs/GaAs quantum dot with built-in charge (Q-BIC) solar cells. We found that n-doping the inter-dot space of a quantum dot solar cell (QDoSC) increases the short circuit current density from 15.07 mA/cm2 in undoped QDoSC to 24.30 mA/cm2 in the device doped to provide approximately six electrons per dot. To identify the physical mechanisms that provide this significant improvement, we investigate the photovoltaic response and its spectral characteristics in GaAs reference cell, undoped, n-doped, and p-doped QDoSCs. We found that the photovoltaic efficiency of the undoped QDoSC is almost the same as that of the reference cell. The efficiency monotonically improves with increasing n-doping, while the p-doping deteriorates the photovoltaic conversion. Studies of the photoluminescence of p- and n-doping show that the photoelectron capture into QDs is substantially faster than the hole capture, which leads to an accumulation of electrons in QDs. The built-in-dot electron charge enhances electron inter-subband QD transitions, suppresses the fast electron capture processes, and together with charged donors, forms the potential profile which precludes degradation of the open circuit voltage. All of these factors lead to the enhanced harvesting of IR energy and to a radical improvement of the QDoSC efficiency. Even higher efficiencies are anticipated for higher n-doping levels.
机译:我们报告说,带有内置电荷(Q-BIC)太阳能电池的新型InAs / GaAs量子点的功率效率提高了50%。我们发现,对量子点太阳能电池(QDoSC)的点间空间进行n掺杂会使短路电流密度从未掺杂QDoSC中的15.07 mA / cm2增加到掺杂后可为每个点提供大约六个电子的器件中的24.30 mA / cm2。 。为了确定提供这种显着改善的物理机制,我们研究了GaAs参考电池,未掺杂,n掺杂和p掺杂QDoSC中的光伏响应及其光谱特性。我们发现,未掺杂的QDoSC的光伏效率与参考电池的光伏效率几乎相同。效率随着n掺杂的增加而单调提高,而p掺杂会使光伏转换变差。对p和n掺杂的光致发光研究表明,光电子捕获到QD中的速度比空穴捕获快得多,这导致电子在QD中积累。内置点电子电荷增强了电子子带之间的QD跃迁,抑制了快速的电子捕获过程,并与带电的施主一起形成了电位分布,从而阻止了开路电压的下降。所有这些因素导致IR能量的采集增强,并且QDoSC效率得到了根本性的提高。对于更高的n掺杂水平,预计会有更高的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号