首页> 外文会议>Photonic Quantum Computing II >Toward design principles for physically realizable algorithms for high-complexity computations
【24h】

Toward design principles for physically realizable algorithms for high-complexity computations

机译:面向高复杂度计算的可物理实现算法的设计原理

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Implementation of the present form of the Shor factoring algorithm for numbers large enough to interest cryptographers and number theorists may pose problems of precision of measurement that apparently have received less attention than the problems of maintaining coherence during the algorithm's unitary transformations on its quantum registers. Hence, those whose primary interest is a major advancement of computational power may reasonably ask if other physical phenomena or other algorithm design principles might pose milder technical difficulties while providing desired computations. Recalling that Hopfield and Tank's neural network formula for solving the traveling salesman problem was originally inspired by the Hamiltonians of spin glasses has led to a possible spin-relaxation method for solving factorization problems. The search process starts at quasi-Monte Carlo points that in research on numerical integration have been shown to be adequate samples of unit hypercubes. Feasibility of implementation of this method has not been shown, with two evident types of difficulty: initializing a spin system to the quasi-Monte Carlo points, and achieving the needed wide dynamic range of couplings between spins. As real spin system both evolve unitarily under conditions where coupling to the rest of the world can be neglected and display relaxation behavior where coupling is significant, there may be a useful complementarily between unitary transformations and relaxation processes in implementing different phases of a computation, and alternating between them would provide some degree of noise suppression comparable to that found in conventional digital technology. The strategy of equipartitioning searches provides a possible framework for factoring some computations into feasible portions. !16
机译:摘要:对于足够大的数字使密码学家和数字理论家感兴趣的数字,目前形式的Shor分解算法的实现可能会带来测量精度问题,显然,与在算法对其量子寄存器进行unit变换时保持相干性问题相比,该问题受到的关注较少。因此,那些主要关注计算能力的主要提高的人可能会合理地询问其他物理现象或其他算法设计原理是否会在提供所需计算时带来较轻的技术难度。回想起Hopfield和Tank用于解决旅行推销员问题的神经网络公式最初是受自旋玻璃的哈密顿量启发的,从而导致了可能的自旋松弛方法来解决因式分解问题。搜索过程始于准蒙特卡洛点,在数值积分研究中已证明它们是单位超立方体的适当样本。尚未显示实现此方法的可行性,但有两种明显的困难类型:将自旋系统初始化为准蒙特卡洛点,以及实现自旋之间耦合所需的宽动态范围。由于实际的自旋系统既可以在与世界其他地方的耦合被忽略的条件下整体发展,又可以在耦合显着的情况下显示松弛行为,所以在实现计算的不同阶段时,unit变换和松弛过程之间可能会有有益的补充,并且与传统数字技术相比,它们之间的交替将提供一定程度的噪声抑制。等分搜索策略为将某些计算分解为可行部分提供了可能的框架。 !16

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号