首页> 外文会议>Photonic Crystal Materials and Devices III >Balancing accuracy against computation time: 3-D FDTD for nanophotonics device optimization
【24h】

Balancing accuracy against computation time: 3-D FDTD for nanophotonics device optimization

机译:精确度与计算时间的平衡:用于纳米光子器件优化的3-D FDTD

获取原文
获取原文并翻译 | 示例

摘要

The finite-difference time-domain (FDTD) approach is now widely used to simulate the expected performance of photonic crystal, plasmonic, and other nanophotonic devices. Unfortunately, given the computational demands of full 3-D simulations, researchers can seldom bring this modeling tool to bear on more than a few isolated design points. Thus 3-D FDTD―as it stands now―is merely a verification rather than a design optimization tool. Over the long term, continuing improvements in available computing power can be expected to bring structures of current interest within general reach. In the meantime, however, many researchers appear to be exploring alternative modeling techniques, trading off flexibility of approach in return for more rapid turnaround on the devices of specific interest to them. In contrast, we are trying to improve the efficiency of 3-D FDTD by reducing its computational expense without sacrificing accuracy. We believe that these two approaches are completely complementary because even with vast amounts of computational power, any real-world system will still require a modular approach to modeling, spanning from the nanometer to the millimeter scale or beyond.
机译:时域有限差分(FDTD)方法现已广泛用于模拟光子晶体,等离子和其他纳米光子器件的预期性能。不幸的是,考虑到完整的3D模拟的计算需求,研究人员很少能够将此建模工具用于多个孤立的设计点。因此,目前的3-D FDTD只是一种验证,而不是设计优化工具。从长远来看,可以预期的是,可用计算能力的不断提高将使当前感兴趣的结构进入普遍的范围。然而,与此同时,许多研究人员似乎正在探索替代建模技术,以牺牲方法的灵活性为代价来换取他们特别感兴趣的设备的更快速周转。相反,我们正在尝试通过降低3D FDTD的计算量而不牺牲精度来提高其效率。我们认为这两种方法是完全互补的,因为即使具有大量的计算能力,任何现实世界的系统仍将需要模块化的建模方法,范围从纳米到毫米甚至更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号