【24h】

LILE-DEPLETION IN GRANULITES: MYTH OR REALITY?

机译:花岗岩中的百合花损耗:神话还是现实?

获取原文

摘要

The notion of LILE-depletion in granulites, which in the early seventies has led to the concept of granulite formation by melt extraction, has been for a long time almost a dogma in metamorphic petrology. After a short review of the historical background, it is shown that the chemical changes at the granulite/amphibolite boundary are far more complex than commonly assumed. Besides the elements commonly invoked (essentially heat-producing elements like K, U, Rb, Cs ), many other elements are concerned: REE, Ti, Zr, etc. The behaviour of these elements is quite variable from occurrence to occurrence: depletion, increase, immobility. A number of evidences, from field observation to mass balance evaluations, show that melt extraction is only one, probably minor, mechanism among many others. Element mobility at the lower crustal level is dominated by fluid-rock interaetion. Two major types of fluids are concerned, CO_2 and brines, which are generated by a number of processes: inheritage from sedimentary formation waters, fluids resulting from 'vapor-absent melting' or introduced from external sources during and after peak-metamorphic conditions. These fluids, not granitic melts, are responsible for most of the typical granulite features: control of H_2O aetivity (with direct implications for the stability of anhydrous mineral assemblages), selective dissolution and transport of chemical elements, including some considered traditionally as immobile during regional metamorphism (Zr,Ti, REE). Hypotheses are presented for the respective roles of both fluids: CO_2 could be involved in the transport of Zr and REE, brines in the control of alkali mobility.
机译:粒岩中LILE耗尽的概念在七十年代初已导致通过熔体萃取形成粒岩的概念,在很长一段时间以来,它几乎一直是变质岩石学的教条。简短回顾一下历史背景后,可以发现,花岗石/闪石边界处的化学变化比通常假定的要复杂得多。除了通常调用的元素(本质上是发热元素,例如K,U,Rb,Cs)外,还涉及许多其他元素:REE,Ti,Zr等。这些元素的行为因事件的发生而变化很大:耗尽,增加,不动。从实地观察到质量平衡评估的许多证据表明,熔体萃取只是许多其他机制中的一种,可能只是次要的。地壳下部的元素迁移率主要受流体-岩石相互作用的影响。涉及两种主要类型的流体,即CO_2和盐水,它们是通过多种过程产生的:从沉积地层水中继承,在“峰值变质”期间和之后从“无蒸气融化”或从外部来源引入的流体。这些流体而不是花岗岩熔体负责大多数典型的花岗石特征:控制H_2O的活性(直接影响无水矿物组合的稳定性),化学元素的选择性溶解和运输,包括一些传统上认为在区域内不可移动的元素变质作用(Zr,Ti,REE)。提出了两种流体各自作用的假设:CO_2可能参与Zr和REE的运输,盐水在碱迁移率的控制中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号