首页> 外文会议>Automotive partnering summit 2018 >Re-Energizing the Silicon Anode: A New Approach to the Highest Energy Li-Ion System
【24h】

Re-Energizing the Silicon Anode: A New Approach to the Highest Energy Li-Ion System

机译:重新给硅阳极通电:最高能量锂离子系统的新方法

获取原文
获取原文并翻译 | 示例

摘要

With an anticipated >170 GWh of Li-ion production capacity online by 2021 (>500% increase relative to 2015 production), it's critical for any advanced Li-ion technologies to be compatible with the existing manufacturing and supply chain infrastructure. New battery designs that incorporate advanced electrode materials using conventional manufacturing processes provide versatility, selectivity in materials, and rapid commercialization of next-generation performance. A production process that can integrate a range of material geometries and chemistries using standard methodology also increases design efficiency and flexibility. SilLion's Li-ion battery technology enables silicon anodes (up to 80 wt.% Si) and high-energy cathode materials (including "NCM[811]") via conventional electrode and cell manufacturing equipment and supply chains. The company is currently prototyping its technology, incorporating a number of silicon and NCM material types, with engineering proto type energy densities of >300 Wh/kg, capable of achieving >350 Wh/kg in production. The utilization of high silicon loadings and the ability to use any type of silicon material, including micron-sized silicon particles, is made possible by leveraging the mechanical strength of a conductive binder coating. By encapsulating the Si particles in a resilient, yet porous, conductive coating matrix the volume and morphology changes of the Si particles are contained. Remarkably, this effect (dubbed: "self-contained fragmentation") is produced via the conventional electrode fabrication process. The result: a battery design enabling the high energy Li-ion system comprising a high-loading silicon anode and nickel-rich NMC cathode (or other cathode material).
机译:到2021年,锂离子电池的在线生产能力预计将超过170 GWh(相对于2015年的产量增长> 500%),对于任何先进的锂离子技术而言,使其与现有的制造和供应链基础设施兼容至关重要。新电池设计采用传统制造工艺结合了先进的电极材料,可提供多功能性,材料选择性以及下一代性能的快速商业化。使用标准方法可以整合多种材料几何形状和化学成分的生产过程也可以提高设计效率和灵活性。 SilLion的锂离子电池技术可通过常规的电极和电池制造设备以及供应链实现硅阳极(硅含量高达80%)和高能阴极材料(包括“ NCM [811]”)。该公司目前正在对其技术进行原型设计,并结合了多种硅和NCM材料类型,其工程原型类型能量密度> 300 Wh / kg,能够实现生产时> 350 Wh / kg。通过利用导电粘合剂涂层的机械强度,可以利用高硅负载量以及使用任何类型的硅材料(包括微米级硅颗粒)的能力。通过将硅颗粒包封在弹性但多孔的导电涂层基质中,可以容纳硅颗粒的体积和形态变化。值得注意的是,这种效果(称为“自包含碎片”)是通过常规电极制造工艺产生的。结果:电池设计使高能锂离子系统成为可能,该系统包括高负荷硅阳极和富镍NMC阴极(或其他阴极材料)。

著录项

  • 来源
  • 会议地点 San Diego(US)
  • 作者单位

    SilLion, Inc., 2150 West 6th Avenue, Suite N, Broomfield, CO 80020 USA;

    SilLion, Inc., 2150 West 6th Avenue, Suite N, Broomfield, CO 80020 USA;

    SilLion, Inc., 2150 West 6th Avenue, Suite N, Broomfield, CO 80020 USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-26 14:32:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号