【24h】

ENHANCED THERMAL CONDUCTIVITY IN LOW TEMPERATURE COFIRE CERAMIC (LTCC) USING THICK SILVER TAPE

机译:使用厚银带提高低温复合陶瓷(LTCC)的导热性

获取原文
获取原文并翻译 | 示例

摘要

Increased speeds for digital devices also equate to increased power dissipation. Discrete device power dissipation is projected to exceed 100W/cm~2 This level of concentrated power requires the development of novel thermal management systems to manage the thermal load from the device to some heat sink. The entire system must be considered, as the path with the highest thermal resistance will dominate the overall thermal performance. An enhanced thermal via structure to transport heat through the LTCC was developed using a co-fireable thick film silver tape. The green thickness could be varied with tape casting, with successful fabrication and firing of tapes up to 0.5mm (20 mils) in thickness with no camber in the fired structure. The sintering dynamics were optimized by selection of the particle size and initial porosity (by organic loading of the tape) to match the firing kinetics of the LTCC tape. To inhibit camber, a sandwich structure of ceramic/metal/ceramic had to be used, although high metal loaded thermal vias could be developed in the ceramic layer. The via section had a theoretical thermal conductivity near 100 W/m-℃, resulting in a thermal impedance of less than .06℃-cm~2/W with a 1mm thick sandwich structure, a 100 times decrease compared to LTCC.
机译:数字设备速度的提高也等同于功耗的增加。离散器件的功耗预计超过100W / cm〜2。这种集中功率水平要求开发新颖的热管理系统,以管理从器件到某些散热器的热负荷。必须考虑整个系统,因为具有最高热阻的路径将主导整体热性能。使用可共烧的厚膜银胶带开发了一种增强的热通孔结构,用于通过LTCC传输热量。生坯厚度可以通过铸带而变化,可以成功地制造和烧制厚度达0.5毫米(20密耳)的带,且烧成结构中没有弯度。通过选择粒径和初始孔隙率(通过带的有机负载)来优化烧结动力学,以匹配LTCC带的烧结动力学。为了抑制弯曲,必须使用陶瓷/金属/陶瓷的夹层结构,尽管可以在陶瓷层中形成高金属负载的散热孔。通孔部分的理论热导率接近100 W / m-℃,使用1mm厚的三明治结构时,其热阻小于.06℃-cm〜2 / W,与LTCC相比,降低了100倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号