首页> 外文会议>Oxide-based materials and devices VIII >Fluorine and oxygen plasma influence on nanoparticle formation and aggregation in metal oxide thin film transistors
【24h】

Fluorine and oxygen plasma influence on nanoparticle formation and aggregation in metal oxide thin film transistors

机译:氟和氧等离子体对金属氧化物薄膜晶体管中纳米颗粒形成和聚集的影响

获取原文
获取原文并翻译 | 示例

摘要

Despite recent advances in metal oxide thin-film transistor technology, there are no foundry processes available yet for large-scale deployment of metal oxide electronics and photonics, in a similar way as found for silicon based electronics and photonics. One of the biggest challenges of the metal oxide platform is the stability of the fabricated devices. Also, there is wide dispersion on the measured specifications of fabricated TFT, from lot-to-lot and from different research groups. This can be partially explained by the importance of the deposition method and its parameters, which determine thin film microstructure and thus its electrical properties. Furthermore, substrate pretreatment is an important factor, as it may act as a template for material growth. Not so often mentioned, plasma processes can also affect the morphology of deposited films on further deposition steps, such as inducing nanoparticle formation, which strongly impact the conduction mechanism in the channel layer of the TFT. In this study, molybdenum doped indium oxide is sputtered onto ALD deposited HfD_2 with or without pattering, and etched by RIE chlorine based processing. Nanoparticle formation is observed when photoresist is removed by oxygen plasma ashing. HfO_2 etching in CF_4/Ar plasma prior to resist stripping in oxygen plasma promotes the aggregation of nanoparticles into nanosized branched structures. Such nanostructuring is absent when oxygen plasma steps are replaced by chemical wet processing with acetone. Finally, in order to understand the electronic transport effect of the nanoparticles on metal oxide thin film transistors, TFT have been fabricated and electrically characterized.
机译:尽管最近在金属氧化物薄膜晶体管技术方面取得了进步,但尚无用于大规模部署金属氧化物电子学和光子学的铸造工艺,类似于用于硅基电子学和光子学的方法。金属氧化物平台的最大挑战之一是制成装置的稳定性。此外,批次与批次以及不同研究组在制造的TFT的测量规格上存在很大的差异。这可以通过沉积方法及其参数的重要性来部分解释,沉积方法及其参数决定了薄膜的微观结构,进而决定了其电性能。此外,底物预处理是重要的因素,因为它可以充当材料生长的模板。很少提及的是,等离子体工艺还会影响其他沉积步骤(例如诱导纳米颗粒的形成)上沉积膜的形貌,这会严重影响TFT沟道层中的导电机制。在这项研究中,将钼掺杂的氧化铟以有无溅射方式溅射到ALD沉积的HfD_2上,并通过RIE氯基工艺进行蚀刻。当通过氧等离子体灰化去除光致抗蚀剂时,观察到纳米颗粒的形成。在氧等离子体中进行抗蚀剂剥离之前,在CF_4 / Ar等离子体中进行HfO_2蚀刻可促进纳米颗粒聚集为纳米级分支结构。当氧等离子步骤被丙酮化学湿法处理所取代时,则没有这种纳米结构。最后,为了理解纳米粒子在金属氧化物薄膜晶体管上的电子传输效应,已经制造了TFT并对其进行了电学表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号