首页> 外文会议>Optical trapping and optical micromanipulation VII >Development of Microfluidic System and Optical Tweezers for electrophy siological investigations of an individual cell
【24h】

Development of Microfluidic System and Optical Tweezers for electrophy siological investigations of an individual cell

机译:微流控系统和光镊的开发,用于单个细胞的电生理检查

获取原文
获取原文并翻译 | 示例

摘要

We present a new approach of combining Lab-on-a-chip technologies with optical manipulation technique for accurate investigations in the field of cell biology. A general concept was to develop and combine different methods to perform advanced electrophysiological investigations of an individual living cell under optimal control of the surrounding environment. The conventional patch clamp technique was customized by modifying the open system with a gas-tight multifunctional microfluidics system and optical trapping technique (optical tweezers).rnThe system offers possibilities to measure the electrical signaling and activity of the neuron under optimum conditions of hypoxia and anoxia while the oxygenation state is controlled optically by means of a spectroscopic technique. A cell-based microfluidics system with an integrated patch clamp pipette was developed successfully. Selectively, an individual neuron is manipulated within the microchannels of the microfluidic system under a sufficient control of the environment. Experiments were performed to manipulate single yeast cell and red blood cell (RBC) optically through the microfluidics system toward an integrated patch clamp pipette. An absorption spectrum of a single RCB was recorded which showed that laser light did not impinge on the spectroscopic spectrum of light. This is promising for further development of a complete lab-on-a-chip system for patch clamp measurements.
机译:我们提出了一种将芯片实验室技术与光学操纵技术相结合的新方法,用于细胞生物学领域的精确研究。一般的概念是开发和组合不同的方法,以在周围环境的最佳控制下对单个活细胞进行高级电生理研究。传统的膜片钳技术是通过使用气密多功能微流控系统和光学陷阱技术(光学镊子)修改开放系统而定制的。该系统提供了在缺氧和缺氧的最佳条件下测量神经元的电信号传导和活动的可能性。氧合状态通过光谱技术进行光学控制。具有集成膜片钳移液器的基于细胞的微流控系统已成功开发。选择性地,在环境的充分控制下,在微流体系统的微通道内操纵单个神经元。进行实验以通过微流体系统朝集成的膜片钳移液器光学操纵单个酵母细胞和红细胞(RBC)。记录了单个RCB的吸收光谱,该吸收光谱显示激光不撞击光的光谱。这对于进一步开发用于膜片钳测量的完整的片上实验室系统很有希望。

著录项

  • 来源
    《Optical trapping and optical micromanipulation VII》|2010年|p.77622K.1-77622K.7|共7页
  • 会议地点 San Diego CA(US)
  • 作者单位

    Dept. of Computer Science and Electrical Engineering, Lulea University of Technology/Lulearntekniska universitet, 97187 Lulea, Sweden;

    Dept. of Computer Science and Electrical Engineering, Lulea University of Technology/Lulearntekniska universitet, 97187 Lulea, Sweden;

    Dept. of Computer Science and Electrical Engineering, Lulea University of Technology/Lulearntekniska universitet, 97187 Lulea, Sweden;

    Dept. of Computer Science and Electrical Engineering, Lulea University of Technology/Lulearntekniska universitet, 97187 Lulea, Sweden;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

    Optical Tweezers; neurons; microfluidics; patch clamp; hypoxia; anoxia and spectroscopy;

    机译:光学镊子;神经元微流体膜片夹;缺氧缺氧和光谱学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号