首页> 外文会议>Optical microlithography XXX >FinFET-induced Anisotropy in Printing of Implantation Shapes
【24h】

FinFET-induced Anisotropy in Printing of Implantation Shapes

机译:FinFET诱导的植入形状印刷中的各向异性

获取原文
获取原文并翻译 | 示例

摘要

In advanced technological nodes, the photoresist absorbs light, which is reflected by underlying topography during optical lithography of implantation layers. Anti-reflective coating (ARC) helps to suppress the reflections, but ARC removal may damage transistors, not to mention its relatively high cost. Therefore ARC is usually not used, and topography modeling becomes obligatory for printing implantation shapes. Furthermore, presence of Fin Field Effect Transistors (FinFETs) makes modeling of non-uniform substrate reflections exceptionally challenging. In realistic designs, the same implantation shape may be found in a vertical or in a rotated horizontal orientation. This creates two types of relationships between the critical dimension (CD) and FinFET, namely parallel to and perpendicular to the fins. The measurement data shows that CDs differ between these two orientations. This discrepancy is also revealed by our Rigorous Optical Topography simulator. Numerical experiments demonstrate that the shape orientation may introduce CD differences of up to 45 nm with a 248 nm illumination for 14 nm technology. These differences are highly dependent on the enclosure (distance between implantation shape and active area). One of the major causes of the differences is that in the parallel orientation the shape is facing solid sidewalls of fins, while the perpendicular oriented shape "sees" only perforated sidewalls of the fin structure, which reflect much less energy. Meticulously stated numerical experiments helped us to thoroughly understand anisotropic behavior of CD measurement. This allowed us to more accurately account for FinFET-related topography effects in the compact implantation modeling for optical proximity corrections (OPC). This improvement is validated against wafer measurement data.
机译:在先进的技术节点中,光致抗蚀剂吸收光,该光在注入层的光学光刻期间被下面的形貌反射。抗反射涂层(ARC)有助于抑制反射,但是去除ARC可能会损坏晶体管,更不用说其相对较高的成本了。因此,通常不使用ARC,并且对于打印植入形状,必须进行地形建模。此外,鳍式场效应晶体管(FinFET)的存在使非均匀衬底反射的建模异常困难。在实际设计中,可以在垂直或旋转的水平方向上找到相同的植入形状。这在临界尺寸(CD)和FinFET之间创建了两种类型的关系,即与鳍垂直和垂直。测量数据表明,这两个方向之间的CD有所不同。我们的严格光学地形模拟器也揭示了这种差异。数值实验表明,对于14 nm技术,在248 nm照明下,形状取向可能会引入最大45 nm的CD差异。这些差异在很大程度上取决于外壳(植入物形状和有效区域之间的距离)。造成这种差异的主要原因之一是,在平行方向上,形状面对翅片的实心侧壁,而垂直方向上的形状仅“看到”翅片结构的穿孔侧壁,反射的能量要少得多。精心说明的数值实验帮助我们彻底了解了CD测量的各向异性行为。这使我们能够在用于光学邻近校正(OPC)的紧凑型植入模型中更准确地说明FinFET相关的形貌效应。根据晶片测量数据验证了这一改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号