首页> 外文会议>Optical interactions with tissue and cells XXVII >Investigation of superparamagnetic (Fe_3O_4) nanoparticles and magnetic field exposures on CHO-K1 cell line
【24h】

Investigation of superparamagnetic (Fe_3O_4) nanoparticles and magnetic field exposures on CHO-K1 cell line

机译:CHO-K1细胞系中超顺磁性(Fe_3O_4)纳米粒子和磁场暴露的研究

获取原文
获取原文并翻译 | 示例

摘要

Rapid development in nanomaterial synthesis and functionalization has led to advanced studies in actuation and manipulation of cellular functions for biomedical applications. Often these actuation techniques employ externally applied magnetic fields to manipulate magnetic nanomaterials inside cell bodies in order to drive or trigger desired effects. While cellular interactions with low-frequency magnetic fields and nanoparticles have been extensively studied, the fundamental mechanisms behind these interactions remain poorly understood. Additionally, modern investigations on these concurrent exposure conditions have been limited in scope, and difficult to reproduce. This study presents an easily reproducible method of investigating the biological impact of concurrent magnetic field and nanoparticle exposure conditions using an in-vitro CHO-K1 cell line model, with the purpose of establishing grounds for in-depth fundamental studies of the mechanisms driving cellular-level interactions. Cells were cultured under various nanoparticle and magnetic field exposure conditions from 0 to 500 μg/ml nanoparticle concentrations, and DC, 50 Hz, or 100 Hz magnetic fields with 2.0 mT flux density. Cells were then observed by confocal fluorescence microscopy, and subject to biological assays to determine the effects of concurrent extreme-low frequency magnetic field and nanoparticle exposures on cell-nanoparticle interactions, such as particle uptake and cell viability by MTT assay. Current results indicate little to no variation in effect on cell cultures based on magnetic field parameters alone; however, it is clear that deleterious synergistic effects of concurrent exposure conditions exist based on a significant decrease in cell viability when exposed to high concentrations of nanoparticles and concurrent magnetic field.
机译:纳米材料合成和功能化的快速发展导致了对生物医学应用中细胞功能的激活和操纵的高级研究。通常,这些驱动技术采用外部施加的磁场来操纵细胞体内的磁性纳米材料,以驱动或触发所需的效果。虽然已经广泛研究了细胞与低频磁场和纳米粒子的相互作用,但对这些相互作用背后的基本机理仍知之甚少。另外,对这些同时暴露条件的现代研究范围有限,并且难以复制。这项研究提供了一种易于重现的方法,可以使用体外CHO-K1细胞系模型研究同时存在的磁场和纳米颗粒暴露条件对生物学的影响,目的是为深入研究驱动细胞凋亡的机制奠定基础。水平互动。将细胞在0至500μg/ ml纳米颗粒浓度的各种纳米颗粒和磁场暴露条件下,以及具有2.0 mT通量密度的DC,50 Hz或100 Hz磁场下进行培养。然后通过共聚焦荧光显微镜观察细胞,并进行生物学分析,以确定并发的超低频磁场和纳米颗粒暴露对细胞-纳米颗粒相互作用(如通过MTT分析)的影响,例如颗粒摄取和细胞活力。当前的结果表明仅基于磁场参数对细胞培养的影响几乎没有变化。然而,很明显,同时暴露条件的有害协同作用是由于暴露于高浓度的纳米颗粒和同时存在的磁场时细胞活力的显着降低而存在的。

著录项

  • 来源
    《Optical interactions with tissue and cells XXVII》|2016年|97061Y.1-97061Y.5|共5页
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX,Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX;

    General Dynamics Information Technology, JBSA Fort Sam Houston, TX 78234;

    Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, WPAFB, Dayton, OH;

    Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX;

    Radio Frequency Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Magnetic fields; magnetic nanoparticles; nano-manipulation; superparamagnetic; CHO-K1;

    机译:磁场;磁性纳米粒子纳米操纵超顺磁性CHO-K1;
  • 入库时间 2022-08-26 13:44:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号