首页> 外文会议>Offshore Technology Conference;ExxonMobil;FMCTechnologies;Schlumberger >Holistic Systems Analysis: A Case Study Demonstrating Simple Models Improving the Reliability of the BOP Control Equipment Ecosystem
【24h】

Holistic Systems Analysis: A Case Study Demonstrating Simple Models Improving the Reliability of the BOP Control Equipment Ecosystem

机译:整体系统分析:一个案例研究,该案例演示了改善BOP控制设备生态系统可靠性的简单模型

获取原文
获取原文并翻译 | 示例

摘要

Owing to their complexity and lack of system level data, subsea BOP control system design hasrnhistorically focused on the component level design and analysis. When system level design and analysisrnis considered, it is often performed at assumed steady state conditions and without a detailed knowledgernof end-user operating conditions. The interaction of multi-domain dynamically coupled systems can resultrnin unintended system level behavior, including field performance issues and system failure. The timelyrnresolution of these field performance issues is of critical concern as rig non-productive time (NPT) canrncost operators of floating rigs in excess of USD 15 thousand per hour [1]. The current approach tornresolving field performance issues typically involves replacement of the failed component or overengineeringrnto improve robustness at the expense of cost, weight, and efficiency. However, as the industryrnpushes for cost reduction and increased reliability, solutions must meet more than fit, form, and function;rna holistic approach to solving field performance issues must be developed to ensure original equipmentrnmanufacturers (OEMs) and operators collaborate together to treat not only the u0002symptomsu0002 of equipmentrnfailure, but also address the underlying system "disease". In this work, a case study is presented of arnlow-order mathematical model of a hydraulic control circuit and its utility as a heuristic for rapidly testingrnand optimizing solutions to address field performance failures resulting from pressure transients in a realrnworld hydraulic control circuit.rnA low-order model of hydraulic control circuit was created using a multi-domain lumped parameterrnapproach and replicated the pressure transients detailed in field performance reports, which causedrnrepeated catastrophic failures, e.g. burst inlet/outlet piping, cracked fittings, etc., of the pressure reducingrnvalve. The model was then subjected to a sensitivity analysis to determine dominating input variables, andrnthrough repeated iterations of potential solutions, converged to a high-confidence solution.rnThe high-confidence solution and technical justification from the model were presented to operators forrnfeedback and implementation, and the field verification results are detailed in this paper. The deep systemrnlevel understanding provided by the model aided in consensus building between OEM and operator.rnAdditionally, the results of the model yielded insight to system level communication failures at thernorganizational level between operator and OEM.
机译:由于其复杂性和缺乏系统级数据,海底防喷器控制系统的设计历来集中于组件级的设计和分析。考虑系统级设计和分析时,通常是在假定的稳态条件下执行的,而没有详细的最终用户操作条件知识。多域动态耦合系统的交互可能导致意外的系统级行为,包括现场性能问题和系统故障。这些现场性能问题的及时解决是至关重要的问题,因为浮式钻机的钻机非生产时间(NPT)成本可能超过每小时1.5万美元[1]。解决现场性能问题的当前方法通常包括更换故障部件或过度工程以提高耐用性,但以成本,重量和效率为代价。但是,随着行业为降低成本和提高可靠性而努力,解决方案不仅要满足装配,形式和功能的要求;还必须开发解决现场性能问题的整体方法,以确保原始设备制造商(OEM)和运营商共同合作,不仅要应对设备故障的u0002症状,但也解决了底层系统“疾病”。在这项工作中,将对液压控制回路的arnlow级数学模型进行案例研究,并将其用作快速测试和优化解决方案的试探法,以解决实际液压控制回路中由于压力瞬变而导致的现场性能故障。使用多域集总参数方法创建了液压控制回路的顺序模型,并复制了现场性能报告中详述的压力瞬变,从而导致了重复的灾难性故障,例如减压阀爆裂的进/出口管道,配件破裂等。然后对模型进行敏感性分析,以确定主要的输入变量,并通过反复迭代潜在的解决方案,收敛为高置信度解决方案.rn将模型的高置信度解决方案和技术论据提供给操作员以进行反馈和实施,以及本文对现场验证结果进行了详细介绍。该模型提供的对系统级别的深刻理解有助于OEM与运营商之间建立共识。此外,该模型的结果还可以洞悉运营商与OEM之间组织级的系统级通信故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号