首页> 外文学位 >Utilizing Holistic Ecosystem Indices to Explore Ecosystem Structure and Function and Improve Fisheries Management Strategies
【24h】

Utilizing Holistic Ecosystem Indices to Explore Ecosystem Structure and Function and Improve Fisheries Management Strategies

机译:利用整体生态系统指标探索生态系统结构和功能,完善渔业管理策略

获取原文
获取原文并翻译 | 示例

摘要

The extent of anthropogenic impact on the world has reached has reached the point where humans are fundamentally disrupting the natural structure and function of entire ecosystems. The need to mitigate, restore, and protect natural ecosystems has become a critical issue throughout the world. However, the sheer scale and complexity of ecosystems makes this a difficult problem to solve. Over the past few decades, modern ecology has risen to the challenge by adopting a holistic approach to the study of ecosystems. This holistic perspective incorporates the nonlinear processes, indirect effects, and emergent properties that play a major role in ecosystem behavior. Ecosystems are hierarchal, self-organizing networks, driven by the flow of energy and material. A central focus of this viewpoint emphasizes the philosophy that the whole is more than the sum of its parts and this depiction of ecosystems has shed light on the existence of a general set of driving principles amongst a seemingly endless sea of variables and unknowns. A holistic approach to ecology simplifies the challenges of scale and complexity to allow scientists and managers to tackle ecological issues around the globe.;Chapter 1 of this dissertation constitutes a literature review synthesizing some of the major advancements of modern ecology and the development of a holistic approach to ecosystem research. Ecosystems were placed in the context of complex adaptive systems, focusing on the important structural, functional, and mathematic properties that lead to a set of common emergent properties. The role of thermodynamics in driving ecosystem behavior is then presented along with the application of information theory to develop a conceptual framework for the interactions between components of an ecosystem and how that influences their holistic behavior. Finally, a wide variety of mathematically derived indices of ecosystem structure, function, and organizational complexity are presented. These indices represent approaches from a number of different disciplines that have been applied to the development of modern ecological theory.;Chapter 2 outlines a study aimed at identifying the major drivers of ecosystem structure and function. We used 24 synthetic ecosystem-level indices derived from trophic models, and independently-derived data for net primary productivity, to investigate drivers of ecosystem structure and function for 43 marine ecosystems distributed in all oceans of the world and including coastal, estuaries, mid-ocean islands, open-ocean, coral reef, continental shelf, and upwelling ecosystems. Of these indices, ecosystem Biomass, Primary Production, Respiration, the ratio of Biomass to Total System Throughput (sum of total energy flow into and out of an ecosystem as well as between ecosystem components), the ratio of Production to Biomass, Residence Time (mean time that a unit of energy remains in the ecosystem), Average Trophic Level, and Relative Ascendency (index of organization and complexity of a food web) displayed relationships with measures of net primary productivity (NPP). Our results indicate that despite large geographical and environmental differences, temporal variability of NPP is strongly linked to the structure and function of marine ecosystems.;Chapter 3 builds off of chapter 2 by utilizing the multi-dimensional relationship between variability in NPP and biomass to predict future changes in global biomass distributions under future climate change scenarios. Estimates of variability in NPP were calculated using output from three earth system models (ESMs) to quantify historic distributions of biomass. Similarly, these ESMs were used to quantify future estimates of NPP and subsequent biomass predicted under Representative Concentrations Pathways (RCPs) 4.5 and 8.5. Biomass anomalies between historic estimates and future predictions show very little change in mean global Biomass, but much larger localized anomalies were observed of approximately -200% to 200%. Locations displaying large regional changes include the north Atlantic, Arctic, and eastern tropical Pacific. These results provide useful information concerning which areas of the world that might be the most vulnerable at an ecosystem scale.;Chapter 4 constitutes a heuristic approach to bioeconomic modeling to optimize fishery management strategies in the eastern tropical Pacific. Linking the economic and biological components of human interactions with natural systems is a vital part of effective fisheries management. This study utilized a trophic network model of the eastern tropical Pacific to compare multi-species fishery management strategies by varying the efforts of individual fleets to optimize specific policy objectives. This approach highlights the cascading, indirect effects of fishing across an entire ecosystem and incorporates a holistic perspective to quantify their economic and ecosystem health impacts. Results of this study showed that varying management scenarios can lead to a diverse combination of economic and ecosystem health effects. This study also highlighted the potential for different management strategies to achieve similar economic results, but through alternative mechanisms with significantly different ecosystem-level impacts. (Abstract shortened by ProQuest.).
机译:人为因素对世界的影响已达到人类从根本上破坏整个生态系统的自然结构和功能的程度。减轻,恢复和保护自然生态系统的需求已成为全世界的关键问题。但是,生态系统的规模和复杂性使这一问题难以解决。在过去的几十年中,现代生态学通过采用整体方法来研究生态系统,已成为挑战。这种整体观点纳入了在生态系统行为中起主要作用的非线性过程,间接影响和新兴属性。生态系统是由能量和物质流驱动的分层的,自组织的网络。该观点的中心重点是这样一个哲学,即整体不只是其各个部分的总和,对生态系统的这种描述揭示了在似乎无穷无尽的变量和未知之海中存在一套通用的驱动原理。整体的生态学方法简化了规模和复杂性的挑战,使科学家和管理人员能够解决全球范围内的生态问题。本论文的第一章构成了一篇文献综述,综述了现代生态学的一些重大进展和整体生态学的发展。生态系统研究方法。生态系统被置于复杂的适应性系统中,重点关注导致一组常见紧急属性的重要结构,功能和数学属性。然后介绍了热力学在驱动生态系统行为中的作用,以及信息理论的应用,以开发一个概念框架,用于生态系统各组成部分之间的相互作用以及如何影响其整体行为。最后,提出了从数学上得出的生态系统结构,功能和组织复杂性的各种指标。这些指标代表了已应用于现代生态学理论发展的许多不同学科的方法。第二章概述了旨在确定生态系统结构和功能的主要驱动力的研究。我们使用了来自营养模型的24个综合生态系统水平指数以及独立的净初级生产力数据,以调查分布在世界所有海洋(包括沿海,河口,中游)的43个海洋生态系统的生态系统结构和功能的驱动因素。海洋岛屿,开阔海洋,珊瑚礁,大陆架和上升生态系统。在这些指标中,生态系统生物量,初级生产,呼吸,生物量与总系统吞吐量之比(流入和流出生态系统的总能量之和以及生态系统组成部分之间的比率),生产与生物量之比,停留时间(平均能量在生态系统中的停留时间),平均营养水平和相对优势(组织指数和食物网的复杂性)显示了与净初级生产力(NPP)的关系。我们的研究结果表明,尽管地理和环境差异很大,但NPP的时间变异性与海洋生态系统的结构和功能密切相关。;第3章在第2章的基础上,利用NPP变异性与生物量之间的多维关系来预测未来气候变化情景下全球生物量分布的未来变化。使用三个地球系统模型(ESM)的输出来计算NPP的变异性,以量化生物量的历史分布。同样,这些ESM用于量化未来的NPP估计值以及在“代表性浓度途径”(RCP)4.5和8.5下预测的后续生物量。历史估计和未来预测之间的生物量异常显示,全球平均生物量变化很小,但观察到的更大的局部异常约为-200%至200%。显示较大区域变化的位置包括北大西洋,北极和热带东部太平洋。这些结果提供了有关世界上哪些区域在生态系统规模上最脆弱的有用信息。;第4章构成了一种启发式方法,用于进行生物经济建模,以优化东部热带太平洋地区的渔业管理策略。将人类互动的经济和生物组成部分与自然系统联系起来是有效渔业管理的重要组成部分。这项研究利用东部热带太平洋地区的营养网络模型,通过改变各个船队为优化特定政策目标而付出的努力,来比较多物种渔业管理策略。这种方法突出了级联捕捞对整个生态系统的间接影响,并结合整体观点来量化其对经济和生态系统健康的影响。这项研究的结果表明,不同的管理方案可以导致经济和生态系统健康影响的多种组合。这项研究还强调了通过不同机制对生态系统产生重大影响的不同管理策略获得相似经济成果的潜力。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Schlenger, Adam James.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biological oceanography.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号