首页> 外文会议>Novel in-plane semiconductor lasers XIV >Analysis of Dual-Mode Lasing Characteristics in a 1310 nm Optically-Injected Quantum Dot Distributed Feedback Laser
【24h】

Analysis of Dual-Mode Lasing Characteristics in a 1310 nm Optically-Injected Quantum Dot Distributed Feedback Laser

机译:1310 nm光学注入量子点分布反馈激光器中的双模激光特性分析

获取原文
获取原文并翻译 | 示例

摘要

Recent work has shown the Quantum Dot (QD) material system to be well-suited to support dual-mode lasing. In particular, optical injection from a master laser (ML) into the residual Fabry-Perot (FP) modes of a 1310 nm Quantum Dot Distributed Feedback (QD-DFB) laser has been recently demonstrated to offer a highly reliable platform for stable dual-mode lasing operation. External controls on the ML, such as operating temperature and bias current, can be used to precisely adjust the spacing between the two lasing modes. This tunability of mode-separation is very promising for a range of applications requiring the generation of microwave, millimeter wave and terahertz signals. Considering the versatility and utility of such a scheme, it is imperative to acquire a deeper understanding of the factors that influence the dual-mode lasing process, in order to optimize performance. Toward this end, this paper seeks to further our understanding of the optically-injected dual-mode lasing mechanism. For fixed values of optical power injected into each FP residual mode and wavelength detuning, the dual-mode lasing characteristics are analyzed with regard to important system parameters such as the position and the intensity of the injected residual mode (relative to the Bragg and the other residual FP modes of the device) for two similarly-fabricated QD-DFBs. Results indicate that for dual mode lasing spaced less than 5 nm apart, the relative intensity of the injected FP mode and intracavity noise levels are critical factors in determining dual mode lasing behavior. Insight into the dual-mode lasing characteristics could provide an important design guideline for the master and QD-DFB slave laser cavities.
机译:最近的工作表明,量子点(QD)材料系统非常适合支持双模激光。特别是,最近已经证明,从主激光器(ML)向1310 nm量子点分布式反馈(QD-DFB)激光器的残留Fabry-Perot(FP)模式进行光注入可为稳定的双光斑提供高度可靠的平台。模式激射操作。 ML上的外部控制(例如工作温度和偏置电流)可用于精确调整两个激光模式之间的间距。对于需要产生微波,毫米波和太赫兹信号的一系列应用,模式分离的可调性非常有前途。考虑到这种方案的多功能性和实用性,必须更深入地了解影响双模激光加工的因素,以优化性能。为此,本文力求进一步了解光注入双模激射机理。对于注入到每个FP残留模式和波长失谐的固定光功率值,将针对重要的系统参数(例如注入的残留模式的位置和强度)(相对于Bragg和其他波长)分析双模激光特性设备的剩余FP模式)用于两个类似制造的QD-DFB。结果表明,对于间隔小于5 nm的双模激光,注入的FP模式的相对强度和腔内噪声水平是确定双模激光行为的关键因素。对双模激光特性的深入了解可以为主激光腔和QD-DFB从激光腔提供重要的设计指南。

著录项

  • 来源
    《Novel in-plane semiconductor lasers XIV》|2015年|93821V.1-93821V.12|共12页
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 302 Whittemore Hall, Blacksburg Virginia, 24061, USA,Telecom Paristech, Ecole Nationale Superieure des Telecommunications, CNRS LTCI, 75634 Paris Cedex 13, France;

    Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 302 Whittemore Hall, Blacksburg Virginia, 24061, USA;

    Institute of Photonics, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow, G4 0NW, Scotland, United Kingdom;

    Telecom Paristech, Ecole Nationale Superieure des Telecommunications, CNRS LTCI, 75634 Paris Cedex 13, France;

    Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 302 Whittemore Hall, Blacksburg Virginia, 24061, USA,Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan;

    Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 302 Whittemore Hall, Blacksburg Virginia, 24061, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dual-mode lasing; Optical injection; Quantum dot lasers; Distributed feedback lasers;

    机译:双模激光;光学注射;量子点激光器;分布式反馈激光器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号