【24h】

FATIGUE FAILURE RISK ASSESSMENT IN LOAD CARRYING COMPONENTS

机译:载重组件的疲劳失效风险评估

获取原文
获取原文并翻译 | 示例

摘要

A methodology is presented for integrating probabilistic fracture mechanics (PFM) with quantitative non-destructive inspection (NDI) for the purpose of failure risk assessment in load-carrying elements, mainly, under cycling loading. The definition of the failure risk in structural components is made in the context of the general approach of structural reliability with highlights on the sources of uncertainties and variability encountered in the analysis. The quality of NDI is accounted by the probability of detection (POD), as function of the flaw size. The main focus in the presentation is placed on the fatigue failure risk assessment in conjunction with the quality and timing of the envisaged NDI. The management of failure risk in aerospace technology is exemplified in the framework of established philosophies known as fail-safe and damage tolerance approach. Fail-safe or total life (TL) approach is outlined by the probabilistic assessment of the fatigue life of landing gears components under realistic loading spectra encountered by a combat aircraft. A parametric analysis of the interplay between the iso-probable fatigue life and deterministic safety factors, as applied to the mean life, is outlined. Damage-tolerance (DT) approach to structural safety, having at the core fracture mechanics technology, is presented in the framework of probabilistic paradigm with its inter-relation with variability and uncertainty associated with non-destructive inspection practice. On the base of Monte Carlo computer simulation, a rationale have been developed encompassing the fatigue crack growth (FCG) both under short- and long-crack regime, thus addressing the entire fatigue life. For this purpose, the concepts of "initial fictitious crack" size and "equivalent initial flaw" size are discussed for the purpose of the implementation in the FCG analysis. By computer simulation, it is exemplified the FCG in an aluminum alloy of class 2024 T, for a coupon with central hole. The scatter of the total fatigue life and the crack size at a given life in the simulation follows from the probabilistic input of material strength characteristics (ultimate tensile strength, yield point and fracture toughness) as well as from probabilistic FCG parameters entering a Paris-Klensil type relationship. Further, by fitting the simulated data into continuous statistical distributions enabled to model the key distributions involved in the fatigue failure risk assessment. Finally, the probability of failure, at a specific timing during the fatigue life, is estimated by Monte Carlo massive simulation of the final failure on the base of Failure Analysis Diagram (FAD) approach. It is demonstrated the benefit of applying a non-destructive inspection technique qualified by a specific probability of detection (POD) dependence on the crack size. Quantitatively, the decrease of failure risk is evinced in terms of failure probability. Computer re-sampling simulation known as "bootstrap" technique has been applied for constructing confidence intervals on POD vs. crack size in order to use in the risk analysis safe bounds of POD vs. crack size which, otherwise, are established, merely, on expert bases. It is also discussed the integration of quantitative NDI with probabilistic fracture mechanics, from the perspective of assessing a better timing and capability ranking of non-destructive inspection procedures.
机译:提出了一种方法,用于将概率断裂力学(PFM)与定量无损检查(NDI)集成在一起,目的是评估主要在循环载荷下的承载元件中的失效风险。结构部件失效风险的定义是在结构可靠性的一般方法的背景下进行的,重点是分析中遇到的不确定性和可变性的来源。 NDI的质量是由检测概率(POD)作为缺陷大小的函数来说明的。演讲的主要重点是疲劳失效风险评估以及所设想的NDI的质量和时机。航空技术中故障风险的管理在已确立的哲学框架中得到了体现,该哲学被称为故障安全和损害容忍方法。通过对起落架部件在战斗飞机遇到的实际载荷谱下的疲劳寿命进行概率评估,可以概述故障安全或总寿命(TL)方法。概述了等概率疲劳寿命与确定性安全系数之间相互作用的参数分析(应用于平均寿命)。在概率范式的框架中介绍了具有核心断裂力学技术的结构安全损伤容限(DT)方法,该方法与无损检查实践相关的可变性和不确定性相互关联。在蒙特卡洛计算机仿真的基础上,已经提出了一种理论,其中包括在短裂纹和长裂纹情况下的疲劳裂纹扩展(FCG),从而解决了整个疲劳寿命。为此,讨论了“初始虚拟裂纹”大小和“等效初始缺陷”大小的概念,以便在FCG分析中实施。通过计算机模拟,示例了具有中心孔的试样的2024 T铝合金中的FCG。在模拟中,总疲劳寿命和裂纹尺寸在给定寿命中的散布取决于材料强度特性(最终抗拉强度,屈服点和断裂韧性)的概率输入以及进入Paris-Klensil的概率FCG参数类型关系。此外,通过将模拟数据拟合为连续的统计分布,可以对疲劳失效风险评估中涉及的关键分布进行建模。最后,通过基于故障分析图(FAD)方法的最终故障的蒙特卡洛大规模仿真,可以估算疲劳寿命中特定时间的故障概率。证明了采用无损检测技术的好处,该技术通过特定的检测概率(POD)对裂纹尺寸的依赖性来验证。从数量上看,失效风险的降低体现在失效概率上。为了在风险分析中使用POD与裂缝尺寸的安全界限,已将称为“ bootstrap”技术的计算机重新采样模拟应用于构造POD与裂缝尺寸的置信区间,否则,仅在专家基地。从评估更好的时间和无损检测程序的能力等级的角度出发,还讨论了定量NDI与概率断裂力学的集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号