首页> 外文会议>Nanotechnology >Nanodistribution of the dissolved hydrogen and deuterium in near surface area of metals
【24h】

Nanodistribution of the dissolved hydrogen and deuterium in near surface area of metals

机译:溶解态氢和氘在金属表面附近的纳米分布

获取原文
获取原文并翻译 | 示例

摘要

Results of experiment shows, that concentration of the hydrogen dissolved in the stainless steel type 304 after keeping in normal atmosphere (partial pressure of hydrogen P_(H2) = 5~*10~(-2)Pa, partial pressure of deuterium P_(D2)=7~*10~(-6) Pa) is C_(H2) = 2~*10~(19) at/sm~3, instead of theoretically expected C_(H2) = 2~*10~(19) at/sm~3, similarly, for deuterium, dissolved at P_(D2) = 7~*10~(-6)Pa, its concentration, instead of theoretically expected C_(D2)~(theor) = 8~*10~(15) at/sm~3 is C_(D2) = 1~*10~(18) at/sm~3. As for hydrogen also as for deuterium it is possible to explain their increased concentration by the relay dissociation of sorbed water The results show that the residual atmosphere of hydrogen or deuterium influences on ions exchange processes of deuterium and hydrogen in layers of sorbed water. So, in the submitted results it is enough 0,002% dissociation of sorbed water to ensure the pointed mentioned concentration. Experiment with the sample keeping (during 76 days) in the atmosphere of deuterium at pressure P_(D2) = 5~*10~(-4)Pa shows, that the maximal concentration of the dissolved deuterium is C_(D2) = 1~*10~(18) at/sm~3, that is about eight times less than expected theoretically. Concentration of the dissolved gases (N=6000 cycles, σ= 1500 MPa, n = 600 cont/s) grows up to C_(H2)~(max) = 2~*10~(21) at/sm~3 and C_(D2)~(max) = 3~*10~(19) at/sm~3 as a result of mechanical action influence that corresponds to the 8,5% dissociation of H_2O, and corresponds to 0,1% dissociation of HDO. So it was shown that the friction processes stimulates the process of sorbed water dissociation.
机译:实验结果表明,在常压气氛下(氢气分压P_(H2)= 5〜* 10〜(-2)Pa,氘分压P_(D2) )= 7〜* 10〜(-6)Pa)是C_(H2)= 2〜* 10〜(19 at / sm〜3),而不是理论上预期的C_(H2)= 2〜* 10〜(19)同样,对于氘,在at / sm〜3时以P_(D2)= 7〜* 10〜(-6)Pa的浓度溶解,而不是理论上预期的C_(D2)〜(theor)= 8〜* 10〜 (15)at / sm〜3为C_(D2)= 1〜* 10〜(18)at / sm〜3。至于氢以及氘,可以通过吸附水的中继离解来解释其增加的浓度。结果表明,氢或氘的残留气氛影响吸附水层中氘和氢的离子交换过程。因此,在提交的结果中,吸附水的解离量足以确保所提到的浓度为0,002%。在氘气压力为P_(D2)= 5〜* 10〜(-4)Pa的情况下将样品保持76天的实验表明,溶解的氘的最大浓度为C_(D2)= 1〜 * 10〜(18)at / sm〜3,约为理论上的八倍。溶解气体的浓度(N = 6000次循环,σ= 1500 MPa,n = 600 cont / s)增长到C_(H2)〜(max)= 2〜* 10〜(21)at / sm〜3和C_ (D2)〜(max)= 3〜* 10〜(19)at / sm〜3是机械作用的结果,它对应于H_2O的8.5%分解和HDO的0.1%分解。因此表明,摩擦过程刺激了吸附水的离解过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号