首页> 外文会议>Nanoscale Materials and Modeling-Relations Among Processing, Microstructure and Mechanical Properties >UTILIZING ON-CHIP TESTING AND ELECTRON MICROSCOPY TO STUDY FATIGUE AND WEAR IN POLYSILICON STRUCTURAL FILMS
【24h】

UTILIZING ON-CHIP TESTING AND ELECTRON MICROSCOPY TO STUDY FATIGUE AND WEAR IN POLYSILICON STRUCTURAL FILMS

机译:利用芯片测试和电子显微镜研究多晶硅结构膜的疲劳和磨损

获取原文
获取原文并翻译 | 示例

摘要

Wear and fatigue are important factors in determining the reliability of microelectromechanical systems (MEMS). While the reliability of MEMS has received extensive attention, the physical mechanisms responsible for these failure modes have yet to be conclusively determined. In our work, we use a combination of on-chip testing methodologies and electron microscopy observations to investigate these mechanisms. Our previous studies have shown that fatigue in polysilicon structural thin films is a result of a 'reaction-layer' process, whereby high stresses induce a room-temperature mechanical thickening of the native oxide at the root of a notched cantilever beam, which subsequently undergoes moisture-assisted cracking. Devices from a more recent fabrication run are fatigued in ambient air to show that the post-release oxide layer thicknesses that were observed in our earlier experiments were not an artifact of that particular batch of polysilicon. New in vacuo data show that these silicon films do not display fatigue behavior when the post release oxide is prevented from growing, because of the absence of oxygen. Additionally, we are using polysilicon MEMS side-wall friction test specimens to study active mechanisms in sliding wear at the microscale. In particular, we have developed in vacuo and in situ experiments in the scanning electron microscope, with the objective of eventually determining the mechanisms causing both wear development and debris generation.
机译:磨损和疲劳是确定微机电系统(MEMS)可靠性的重要因素。尽管MEMS的可靠性已受到广泛关注,但导致这些故障模式的物理机制尚未最终确定。在我们的工作中,我们结合使用了片上测试方法和电子显微镜观察来研究这些机制。我们以前的研究表明,多晶硅结构薄膜的疲劳是“反应层”过程的结果,在此过程中,高应力会在室温下在带缺口的悬臂梁根部引起自然氧化物的机械增厚,随后该厚度逐渐增大。水分辅助开裂。来自较新制造过程的设备在环境空气中疲劳,表明在我们较早的实验中观察到的释放后氧化物层厚度不是该特定批次的多晶硅的伪影。真空中的新数据表明,由于不含氧气,当防止释放后氧化物生长时,这些硅膜不会表现出疲劳行为。此外,我们正在使用多晶硅MEMS侧壁摩擦测试样品来研究微观尺度上滑动磨损的主动机制。特别是,我们已经在扫描电子显微镜的真空和原位实验中进行了开发,目的是最终确定引起磨损发展和碎屑产生的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号