首页> 外文会议>Nanomechanical testing in materials research and development V >AN IMPROVED MICROMECHANICAL METHOD FOR INVESTIGATING THE MECHANICAL PROPERTIES OF POLY-SILICON MEMBRANES
【24h】

AN IMPROVED MICROMECHANICAL METHOD FOR INVESTIGATING THE MECHANICAL PROPERTIES OF POLY-SILICON MEMBRANES

机译:研究多晶硅膜力学性能的改进微机械方法

获取原文
获取原文并翻译 | 示例

摘要

Freestanding poly-silicon membranes are of increasing importance for designing MEMS devices such as pressure sensors, microphones and gyroscopes. It is crucial to accurately determine the mechanical properties of such membranes not only to access parameters for designing new devices but also for assuring proper performance and quality in service. Classically, microscopic tensile tests or bulge tests were conducted to obtain Young's modulus and strength of the membrane material. These methods however are prone to artifacts due to crack initiation at edge defects (e.g. predefined notches in tensile specimens or slits in bulge test samples). In search of a method more sensitive to the membrane surface rather than specimen geometries, a novel approach has been introduced more recently. By loading the center region of a circumferentially clamped membrane with a spherical probe, the membrane is stretched all the way up to rupture while precisely recording the load-deflection data. Complementary FEA simulations allow for determining the failure stresses of individual membranes, based on the mechanical test data. In a subsequent step the tests are analyzed via a two-parameter Weibull approach to statistically evaluate the characteristic fracture strength. The membranes tested in the given project had a thickness of only 330 nm over a diameter of 1 mm. The necessity to apply minute forces while testing the compliant membranes at quite large deflections with high precision proves to be challenging. Additionally the need for statistical verification requires conducting multiple tests in a reasonable time frame. In the presented work a commercial nanoindenter has been used to match the aforementioned requirements. Lately some methodological improvements have been implemented to maximize throughput by automation and improve accuracy by refining the data analysis to capture the experimental conditions most realistically. Some of these approaches will be illustrated by recent data and explained in detail.
机译:独立的多晶硅膜对于设计MEMS器件(例如压力传感器,麦克风和陀螺仪)越来越重要。准确确定此类膜的机械性能至关重要,不仅要获得用于设计新设备的参数,而且还要确保适当的性能和服务质量。经典地,进行微观拉伸试验或凸起试验以获得膜材料的杨氏模量和强度。然而,由于边缘缺陷处的裂纹引发(例如,拉伸样品中的预定缺口或凸起的测试样品中的缝隙),这些方法易于产生伪影。为了寻找对膜表面而不是样品几何形状更敏感的方法,最近引入了一种新颖的方法。通过用球形探针在周向夹紧的膜片的中心区域加载,该膜片一直拉伸直至破裂,同时精确记录了载荷-变形数据。互补的FEA模拟可根据机械测试数据确定各个膜的破坏应力。在随后的步骤中,通过两参数Weibull方法对测试进行分析,以统计评估特征断裂强度。在给定项目中测试的膜在1毫米直径上的厚度仅为330纳米。事实证明,在较大挠度下以高精度测试柔顺膜时必须施加微小的力具有挑战性。另外,对统计验证的需求要求在合理的时间范围内进行多次测试。在提出的工作中,已经使用商用纳米压头来满足上述要求。最近,已经实现了一些方法上的改进,以通过自动化最大化吞吐量,并通过优化数据分析以最实际地捕获实验条件来提高准确性。这些方法中的一些将通过最新数据进行说明并进行详细说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号