首页> 外文会议>Nanoengineering: Fabrication, properties, optics, and devices XII >Scalable nanostructuring on polymer by a SiC stamp: optical and wetting effects
【24h】

Scalable nanostructuring on polymer by a SiC stamp: optical and wetting effects

机译:SiC压模在聚合物上可扩展的纳米结构:光学和润湿效果

获取原文
获取原文并翻译 | 示例

摘要

A method for fabricating scalable antireflective nanostructures on polymer surfaces (polycarbonate) is demonstrated. The transition from small scale fabrication of nanostructures to a scalable replication technique can be quite challenging. In this work, an area per print corresponding to a 2-inch-wafer, is presented. The initial nanopatterning is performed on SiC in a 2-step process. Depending on the nanostructures the transmission of the SiC surface can be increased or suppressed (average height of nanostructures ~300nm and ~600nm, respectively) while the reflectance is decreased, when compared to a bare surface. The reflectance of SiC can be reduced down to 0.5% when the ~600nm nanostructures are applied on the surface (bare surface reflectance 25%). The texture of the green SiC color is changed when the different nanostructures are apparent. The ~600nm SiC nanostructures are replicated on polymer through a process flow that involved hot embossing and galvanization. The resulted polymer structures have similar average height and exhibit more rounded edges than the initial SiC nanostructures. The polymer surface becomes antireflective and hydrophobic after nanostructuring. The contact angle changes from 68 (bare) to 123 (nanostructured) degrees. The optical effect on the polymer surface can be maximized by applying a thin aluminum (Al) layer coating on the nanostructures (bare polymer reflectance 11%, nanostructured polymer reflectance 5%, Al coated nanostructured polymer reflectance 3%). The optical measurements were performed with an integrating sphere and a spectrometer. The contact angles were measured with a drop shape analyzer. The nanostructures were characterized with scanning electron microscopy.
机译:展示了一种在聚合物表面(聚碳酸酯)上制造可缩放抗反射纳米结构的方法。从小规模的纳米结构制造到可扩展的复制技术的过渡可能会非常具有挑战性。在这项工作中,每个打印区域对应一个2英寸晶圆。最初的纳米图案化是在SiC上分两步进行的。与裸露的表面相比,取决于纳米结构,可以增加或抑制SiC表面的透射率(纳米结构的平均高度分别为〜300nm和〜600nm),而反射率则降低。当〜600nm的纳米结构应用于表面时,SiC的反射率可降低至0.5%(裸露的表面反射率为25%)。当不同的纳米结构明显时,绿色SiC颜色的纹理就会改变。 〜600nm SiC纳米结构通过涉及热压花和镀锌的工艺流程复制到聚合物上。所得的聚合物结构具有与初始SiC纳米结构相比相似的平均高度,并显示出更多的圆形边缘。纳米结构后,聚合物表面变成抗反射和疏水的。接触角从68度(裸露)变为123度(纳米结构)。通过在纳米结构上涂覆一层薄的铝(Al)涂层(裸聚合物反射率11%,纳米结构聚合物反射率5%,Al涂层纳米结构聚合物反射率3%),可以最大化聚合物表面的光学效果。用积分球和光谱仪进行光学测量。接触角用液滴形状分析仪测量。纳米结构用扫描电子显微镜表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号